Abstract
This paper presents a novel weight-based approach to recognize facial expressions from the near-infrared (NIR) video sequences. Facial expressions can be thought of as specific dynamic textures where local appearance and motion information need to be considered. The face image is divided into several regions from which local binary patterns from three orthogonal planes (LBP-TOP) features are extracted to be used as a facial feature descriptor. The use of LBP-TOP features enables us to set different weights for each of the three planes (appearance, horizontal motion and vertical motion) inside the block volume. The performance of the proposed method is tested in the novel NIR facial expression database. Assigning different weights to the planes according to their contribution improves the performance. NIR images are shown to deal with illumination variations comparing with visible light images.
Chapter PDF
Similar content being viewed by others
References
Ahonen, T., Hadid, A., Pietikäinen, M.: Face Description with Local Binary Patterns: Application to Face Recognition. IEEE PAMI 28(12), 2037–2041 (2006)
Feng, X., Hadid, A., Pietikäinen, M.: A Coarse-to-Fine Classification Scheme for Facial Expression Recognition. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 668–675. Springer, Heidelberg (2004)
Shan, C., Gong, S., McOwan, P.W.: Robust Facial Expression Recognition Using Local Binary Patterns. In: 12th IEEE ICIP, pp. 370–373 (2005)
Liao, S., Fan, W., Chung, A.C.S., Yeung, D.-Y.: Facial Expression Recognition Using Advanced Local Binary Patterns, Tsallis Entropies and Global Appearance Features. In: 13rd IEEE ICIP, pp. 665–668 (2006)
Bassili, J.: Emotion Recognition: The Role of Facial Movement and the Relative Importance of Upper and Lower Areas of the Face. Journal of Personality and Social Psychology 37, 2049–2059 (1979)
Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face Recognition: A Literature Survey. ACM Computing Surveys 35(4), 399–458 (2003)
Adini, Y., Moses, Y., Ullman, S.: Face Recognition: The Problem of Compensating for Changes in Illumination Direction. IEEE PAMI 19(7), 721–732 (1997)
Li, S.Z., Chu, R., Liao, S., Zhang, L.: Illumination Invariant Face Recognition Using Near-Infrared Images. IEEE PAMI 29(4), 627–639 (2007)
Taini, M., Zhao, G., Li, S.Z., Pietikäinen, M.: Facial Expression Recognition from Near-Infrared Video Sequences. In: 19th ICPR (2008)
Zhao, G., Pietikäinen, M.: Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions. IEEE PAMI 29(6), 915–928 (2007)
Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley & Sons, New York (2001)
Zhao, G., Pietikäinen, M.: Principal Appearance and Motion from Boosted Spatiotemporal Descriptors. In: 1st IEEE Workshop on CVPR4HB, pp. 1–8 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Taini, M., Zhao, G., Pietikäinen, M. (2009). Weight-Based Facial Expression Recognition from Near-Infrared Video Sequences. In: Salberg, AB., Hardeberg, J.Y., Jenssen, R. (eds) Image Analysis. SCIA 2009. Lecture Notes in Computer Science, vol 5575. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02230-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-02230-2_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02229-6
Online ISBN: 978-3-642-02230-2
eBook Packages: Computer ScienceComputer Science (R0)