Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimization-Based Peptide Mass Fingerprinting for Protein Mixture Identification

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5541))

Abstract

In current proteome research, the most widely used method for protein mixture identification is probably peptide sequencing. Peptide sequencing is based on tandem Mass Spectrometry (MS/MS) data. The disadvantage is that MS/MS data only sequences a limited number of peptides and leaves many more peptides uncovered.

Peptide Mass Fingerprinting (PMF) has been widely used to identify single purified proteins from single-stage MS data. Unfortunately, this technique is less accurate than the peptide sequencing method and can not handle protein mixtures, which hampers the widespread use of PMF.

In this paper, we tackle the problem of protein mixture identification from an optimization point of view. We show that some simple heuristics can find good solutions to the optimization problem. As a result, we obtain much better identification results than previous methods. Through a comprehensive simulation study, we identify a set of limiting factors that hinder the performance of PMF-based protein mixture identification. We argue that it is feasible to remove these limitations and PMF can be a powerful tool in the analysis of protein mixtures, especially in the identification of low-abundance proteins which are less likely to be sequenced by MS/MS scanning.

Availability: The source codes, data and supplementary documents are available at http://bioinformatics.ust.hk/PMFMixture.rar

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yates, J.R., Speicher, S., Griffin, P.R., Hunkapiller, T.: Peptide mass maps: a highly informative approach to protein identification. Anal. Biochem. 214(2), 297–408 (1993)

    Article  Google Scholar 

  2. Perkins, D.N., Pappin, D.J.C., Creasy, D.M., Cottrell, J.S.: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18), 3551–3567 (1999)

    Article  CAS  PubMed  Google Scholar 

  3. Clauser, K.R., Baker, P., Burlingame, A.L.: Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal. Chem. 71(14), 2871–2882 (1999)

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, W., Chait, B.T.: Profound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal. Chem. 72(11), 2482–2489 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature 422, 198–207 (2003)

    Article  CAS  PubMed  Google Scholar 

  6. Jensen, O.N., Podtelejnikov, A.V., Mann, M.: Identification of the components of simple protein mixtures by high-accuracy peptide mass mapping and database searching. Anal. Chem. 69(23), 4741–4750 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. Park, Z.Y., Russell, D.H.: Identification of individual proteins in complex protein mixtures by high-resolution,high-mass-accuracy MALDI TOF-mass spectrometry analysis of in-solution thermal denaturation/enzymatic digestion. Anal. Chem. 73(11), 2558–2564 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Eriksson, J., Fenyö, D.: Protein identification in complex mixtures. J. Proteome Res. 4(2), 387–393 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. Lu, B., Motoyama, A., Ruse, C., Venable, J., Yates, J.R.: Improving protein identification sensitivity by combining MS and MS/MS information for shotgun proteomics using LTQ-Orbitrap high mass accuracy data. Anal. Chem. 80(6), 2018–2025 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Samuelsson, J., Dalevi, D., Levander, F., Rögnvaldsson, T.: Modular, scriptable and automated analysis tools for high-throughput peptide mass fingerprinting. Bioinformatics 20(18), 3628–3635 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. Monroe, M.E., Tolic, N., Jaitly, N., Shaw, J.L., Adkins, J.N., Smith, R.D.: VIPER: an advanced software package to support high-throughput LC-MS peptide identification. Bioinformatics 23(15), 2021–2023 (2007)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, Z., Yang, C., Yang, C., Qi, R.Z., Tam, J.PM., Yu, W. (2009). Optimization-Based Peptide Mass Fingerprinting for Protein Mixture Identification. In: Batzoglou, S. (eds) Research in Computational Molecular Biology. RECOMB 2009. Lecture Notes in Computer Science(), vol 5541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02008-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02008-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02007-0

  • Online ISBN: 978-3-642-02008-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics