Abstract
Automated motion tracking of the myocardium from 3D echocardiography provides insight into heart’s architecture and function. We present a method for 3D cardiac motion tracking using non-rigid image registration. Our contribution is two-fold. We introduce a new similarity measure derived from a maximum likelihood perspective taking into account physical properties of ultrasound image acquisition and formation. Second, we use envelope-detected 3D echo images in the raw spherical coordinates format, which preserves speckle statistics and represents a compromise between signal detail and data complexity. We derive mechanical measures such as strain and twist, and validate using sonomicrometry in open-chest piglets. The results demonstrate the accuracy and feasibility of our method for studying cardiac motion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lang, M., Mor-Avi, V., Sugeng, L., Nieman, P., Sahn, D.J.: Three-dimensional echocardiography. Jour. of the Am. Coll. of Cardiology 48(10), 2053–2069 (2006)
Myronenko, A., Song, X., Sahn, D.J.: LV motion tracking from 3D echocardiography using textural and structural information. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 428–435. Springer, Heidelberg (2007)
Elen, A., Choi, H.F., Loeckx, D., Gao, H., Claus, P., Suetens, P., Maes, F., D’hooge, J.: Three-dimensional cardiac strain estimation using spatio–temporal elastic registration of ultrasound images: A feasibility study. TMI 27(11), 1580–1591 (2008)
Leung, K., van Stralen, M., Nemes, A., Voormolen, M., Voormolen, M., van Burken, G., Geleijnse, M.J.t., Reiber, J., de Jong, N., van der Steen, A., Bosch, J.: Sparse registration for 3D stress echocardiography. Medical Imaging 27(11), 1568–1579 (2008)
Ledesma-Carbayo, M., Kybic, J., Desco, M., Santos, A., Sühling, M., Hunziker, P., Unser, M.: Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation. IEEE Transactions on Medical Imaging 24(9), 1113–1126 (2005)
Sanchez-Ortiz, G., Wright, G., Clarke, N., Declerck, J., Banning, A., Noble, J.: Automated 3-D echocardiography analysis compared with manual delineations and spect muga. IEEE Transactions on Medical Imaging 21(9), 1069–1076 (2002)
Cohen, B., Dinstein, I.: New maximum likelihood motion estimation schemes for noisy ultrasound images. Pattern Recognition 35(2), 455–463 (2002)
Cobbold, R.S.C.: Foundations of Biomedical Ultrasound. Biomedical Engineering Series. Oxford University Press, Oxford (2006)
Burckhardt, C.B.: Speckle in ultrasound b-mode scans. IEEE Trans. on Sonics and Ultrasonics 25(1) (1978)
Meunier, J.: Tissue motion assessment from 3D echographic speckle tracking. Physics in medicine and biology 43(5), 1241–1254 (1998)
Goodman, J.W.: Speckle Phenomena in Optics. Theory and Applications (2006)
Chandrashekara, R., Mohiaddin, R.H., Rueckert, D.: Daniel rueckert. In: Ayache, N., Delingette, H. (eds.) IS4TM 2003. LNCS, vol. 2673, pp. 88–99. Springer, Heidelberg (2003)
Roche, A., Malandain, G., Ayache, N.: Unifying maximum likelihood approaches in medical image registration. IJIST 11, 71–80 (2000)
Papoulis, A.: Probability, Random Variables, and Stochastic Processes (1991)
Boukerroui, D., Noble, J.A., Brady, M.: Velocity estimation in ultrasound images: A block matching approach. IPMI 2732, 586–598 (2003)
Revell, J., Mirmehdi, M., McNally, D.: Combined ultrasound speckle pattern similarity measures. In: MIUA, pp. 149–153. BMVA Press (2004)
Song, X., Myronenko, A., Sahn, D.J.: Speckle tracking in 3D echocardiography with motion coherence. In: Comp. Vision and Patt. Recognition (CVPR) (2007)
Linguraru, M.G., Vasilyev, N.V., Marx, G.R., Tworetzky, W., Nido, P.J.D., Howe, R.D.: Fast block flow tracking of atrial septal defects in 4D echo. MIA (2008)
Sloane, N.: Online enc. of integer sequences. A002457, A002802, A020918 (2008)
Miller, K., Bernstein, R., Bluemenson, L.: Generalized rayleigh processes. Quarterly of Applied Mathematics 16, 137–145 (1958)
Shankar, P.M.: A general statistical model for ultrasonic backscattering from tissues. IEEE T. Ultr., Ferr. and Frequency Control 47(3), 727–736 (2000)
Tan, C.C., Beaulieu, N.C.: Infinite series representations of the bivariate rayleigh and nakagami-m distributions. IEEE Trans. Communications 45(10) (1997)
Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Image Processing 18(8), 712–721 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Myronenko, A., Song, X., Sahn, D.J. (2009). Maximum Likelihood Motion Estimation in 3D Echocardiography through Non-rigid Registration in Spherical Coordinates. In: Ayache, N., Delingette, H., Sermesant, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2009. Lecture Notes in Computer Science, vol 5528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01932-6_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-01932-6_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01931-9
Online ISBN: 978-3-642-01932-6
eBook Packages: Computer ScienceComputer Science (R0)