Nothing Special   »   [go: up one dir, main page]

Skip to main content

Voxel Based Adaptive Meshless Method for Cardiac Electrophysiology Simulation

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2009)

Abstract

In this paper, an adaptive meshless method is described for solving the modified FitzHugh Nagumo equations on a set of nodes directly imported from the voxels of the medical images. The non-trivial task of constructing suitable meshes for complex geometries to solve the reaction-diffusion equations is circumvented by a meshfree implementation. The spatial derivatives arising in the reaction diffusion system are estimated using the Lagrangian form of scattered node radial basis function interpolant. Normal cardiac activation phenomena is fast, with a very steep upstroke and localised as compared to the size of the computational domain. To accurately capture this phenomena, a space adaptive method is presented where extra nodes are placed near the region of the activation front. The performance of the adaptive method is investigated first for synthetic geometry and then applied to a real-life geometry obtained from magnetic resonance imaging. Numerical results suggest that the presented method is capable of predicting realistic electrophysiology simulation effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hunter, P.J., Pullan, A.J., Smaill, B.H.: Modelling total heart function. Annu. Rev. Biomed. Eng. 5, 147–177 (2003)

    Article  Google Scholar 

  2. Winslow, R.L., Scollan, D.F., Holmes, A., Yung, C.K., Zhang, J., Jafri, M.A.: Electrophysiological modelling of cardiac ventricular function: from cell to organ. Annu. Rev. Biomed. Eng. 2, 119–155 (2000)

    Article  Google Scholar 

  3. Kerckhoffs, R., Narayan, S., Omens, J., Mulligan, L., McCulloch, A.: Computational modeling for bedside application. Heart Failure Clin. 4, 371–378 (2008)

    Article  Google Scholar 

  4. Sermesant, M., Peyrat, J.M., Chinchapatnam, P., Billet, F., Mansi, T., Rhode, K., Delingette, H., Razavi, R., Ayache, N.: Towards patient-specific myocardial models of the heart. Heart Failure Clin. 4, 289–301 (2008)

    Article  Google Scholar 

  5. Luo, C., Rudy, Y.: A model of the ventricular cardiac action potential. depolarization, repolarization and their interaction. Circ. Res. 68(6), 1501–1526 (1991)

    Article  Google Scholar 

  6. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  7. Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos, Solitions and Fractals 7(3), 293–301 (1996)

    Article  Google Scholar 

  8. Garny, A., Noble, D., Kohl, P.: Dimensionality in cardiac modelling. Prog. Biophysics. Mol. Biol. 87(1), 47–66 (2005)

    Article  Google Scholar 

  9. Fasshauer, G.: Meshfree Methods. In: Handbook of Theoretical and Computational Nanotechnology, pp. 33–97. American Scientific Publishers (2006)

    Google Scholar 

  10. Zhang, H., Shi, P.: A meshfree method for solving cardiac electrical propagation. In: IEEE Eng. in Med. and Biol. 27th Annual Conference, pp. 349–352 (2005)

    Google Scholar 

  11. Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212(1), 99–123 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chinchapatnam, P. et al. (2009). Voxel Based Adaptive Meshless Method for Cardiac Electrophysiology Simulation. In: Ayache, N., Delingette, H., Sermesant, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2009. Lecture Notes in Computer Science, vol 5528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01932-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01932-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01931-9

  • Online ISBN: 978-3-642-01932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics