Abstract
Many studies have shown that gait can be deployed as a biometric. Few of these have addressed the effects of view-point and covariate factors on the recognition process. We describe the first analysis which combines view-point invariance for gait recognition which is based on a model-based pose estimation approach from a single un-calibrated camera. A set of experiments are carried out to explore how such factors including clothing, carrying conditions and view-point can affect the identification process using gait. Based on a covariate-based probe dataset of over 270 samples, a recognition rate of 73.4% is achieved using the KNN classifier. This confirms that people identification using dynamic gait features is still perceivable with better recognition rate even under the different covariate factors. As such, this is an important step in translating research from the laboratory to a surveillance environment.
Chapter PDF
Similar content being viewed by others
References
Nixon, M.S., Tan, T.N., Chellappa, R.: Human Identification Based on Gait. The Kluwer International Series on Biometrics. Springer, New York (2005)
Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanID Gait Challenge Problem: Data Sets, Performance, and Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(2), 162–177 (2005)
Yu, S., Tan, D., Tan, T.: A Framework for Evaluating the Effect of View Angle, Clothing and Carrying Condition on Gait Recognition. In: Proceedings of the 18th International Conference on Pattern Recognition, pp. 441–444 (2006)
Bouchrika, I., Nixon, M.: Exploratory factor analysis of gait recognition. In: 8th IEEE Int Conference on Automatic Face and Gesture Recognition (2008)
Goffredo, M., Seely, R.D., Carter, J.N., Nixon, M.S.: Markerless view independent gait analysis with self-camera calibration. In: IEEE International Conference on Automatic Face and Gesture Recognition 2008 (2008)
Bouchrika, I., Nixon, M.S.: Model-Based Feature Extraction for Gait Analysis and Recognition. In: Proceedings of Mirage: Computer Vision / Computer Graphics Collaboration Techniques and Applications, pp. 150–160 (2007)
Aguado, A.S.V., Nixon, M.S., Montiel, M.E.: Parameterizing Arbitrary Shapes via Fourier Descriptors for Evidence-Gathering Extraction. Computer Vision and Image Understanding 69(2), 202–221 (1998)
Chau, T.: A review of analytical techniques for gait data. Part 1: fuzzy, statistical and fractal methods. Gait Posture 13(1), 49–66 (2001)
Wagg, D.K., Nixon, M.S.: On Automated Model-Based Extraction and Analysis of Gait. In: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 11–16 (2004)
Somol, P., Pudil, P., Novovičová, J., Paclík, P.: Adaptive Floating Search Methods in Feature Selection. Pattern Recognition Letters 20(11-13), 1157–1163 (1999)
Agarwal, A., Triggs, B.: Recovering 3d human pose from monocular images. IEEE TPAMI 28, 44–58 (2006)
Veres, G.V., Nixon, M.S., Middleton, L., Carter, J.N.: Fusion of Dynamic and Static Features for Gait Recognition over Time. In: Proceedings of 7th International Conference on Information Fusion, vol. 2 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bouchrika, I., Goffredo, M., Carter, J.N., Nixon, M.S. (2009). Covariate Analysis for View-Point Independent Gait Recognition. In: Tistarelli, M., Nixon, M.S. (eds) Advances in Biometrics. ICB 2009. Lecture Notes in Computer Science, vol 5558. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01793-3_100
Download citation
DOI: https://doi.org/10.1007/978-3-642-01793-3_100
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01792-6
Online ISBN: 978-3-642-01793-3
eBook Packages: Computer ScienceComputer Science (R0)