Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5533))

Abstract

We investigate combinatorial commutation properties for reordering a sequence of two kinds of steps, and for separating well-foundedness of unions of relations. To that end, we develop the notion of a constricting sequence. These results can be applied, for example, to generic path orderings used in termination proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science, vol. 236, pp. 133–178 (2000)

    Google Scholar 

  2. Bachmair, L., Dershowitz, N.: Commutation, transformation, and termination. In: Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 5–20. Springer, Heidelberg (1986), http://www.cs.tau.ac.il/~nachum/papers/CommutationTermination.pdf

    Chapter  Google Scholar 

  3. Blanqui, F., Jouannaud, J.-P., Rubio, A.: HORPO with computability closure: A reconstruction. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 138–150. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Blass, A., Gurevich, Y.: Program termination and well partial orderings. ACM Transactions on Computational Logic (TOCL) 9(3), Article No. 18 (June 2008), http://research.microsoft.com/en-us/um/people/gurevich/opera/178.pdf

  5. Di Cosmo, R., Piperno, A.: Expanding extensional polymorphism. In: Dezani-Ciancaglini, M., Plotkin, G.D. (eds.) TLCA 1995. LNCS, vol. 902, pp. 139–153. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  6. Dawson, J.E., Gore, R.: Termination of abstract reduction systems. In: Proceedings of Computing: The Australasian Theory Symposium (CATS 2007), Ballarat, Australia, pp. 35–43 (2007)

    Google Scholar 

  7. Dershowitz, N.: Termination of linear rewriting systems (Preliminary version). In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 448–458. Springer, Heidelberg (1981), http://www.cs.tau.ac.il/~nachum/papers/Linear.pdf

    Chapter  Google Scholar 

  8. Dershowitz, N.: Orderings for term-rewriting systems. Theoretical Computer Science 17(3), 279–301 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dershowitz, N.: Termination of rewriting. J. of Symbolic Computation 3, 69–116 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dershowitz, N.: Termination by abstraction. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 1–18. Springer, Heidelberg (2004), http://www.cs.tau.ac.il/~nachum/papers/TerminationByAbstraction.pdf

    Chapter  Google Scholar 

  11. Dershowitz, N., Hoot, C.: Natural termination. Theoretical Computer Science 142(2), 179–207 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Communications of the ACM 22(8), 465–476 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Doornbos, H., Backhouse, R., van der Woude, J.: A calculational approach to mathematical induction. Theoretical Computer Science 179, 103–135 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Doornbos, H., von Karger, B.: On the union of well-founded relations. Logic Journal of the IGPL 6(2), 195–201 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fernández, M., Jouannaud, J.-P.: Modular termination of term rewriting systems revisited. In: Astesiano, E., Reggio, G., Tarlecki, A. (eds.) Recent Trends in Data Type Specification. LNCS, vol. 906, pp. 255–272. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  16. Ferreira, M.C.F., Zantema, H.: Well-foundedness of term orderings. In: Dershowitz, N. (ed.) CTRS 1994. LNCS, vol. 968, pp. 106–123. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  17. Geser, A.: Relative Termination, Ph.D. dissertation, Fakultät für Mathematik und Informatik, Universität Passau, Germany (1990); also available as: Report 91-03, Ulmer Informatik-Berichte, Universität Ulm (1991), http://ginevras.pil.fbeit.htwk-leipzig.de/pil-website/public_html/geser/diss_geser.ps.gz .

  18. Huet, G.: Confluent reductions: Abstract properties and applications to term rewriting systems. J. of the Association for Computing Machinery 27(4), 797–821 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goubault-Larrecq, J.: Well-founded recursive relations. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 484–497. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Hindley, J.R.: The Church-Rosser Property and a Result in Combinatory Logic, Ph.D. thesis, University of Newcastle upon Tyne (1964)

    Google Scholar 

  21. Jouannaud, J.-P., Rubio, A.: Higher-order recursive path orderings. In: Proceedings 14th Annual IEEE Symposium on Logic in Computer Science (LICS), Trento, Italy, pp. 402–411 (1999)

    Google Scholar 

  22. Kamin, S., Lévy, J.-J.: Attempts for generalising the recursive path orderings, unpublished note, Department of Computer Science, University of Illinois, Urbana, IL (February 1980), http://pauillac.inria.fr/~levy/pubs/80kamin.pdf

  23. Klop, J.W.: Combinatory Reduction Systems, Mathematical Centre Tracts 127, CWI, Amsterdam, The Netherlands (1980)

    Google Scholar 

  24. Lescanne, P.: On the recursive decomposition ordering with lexicographical status and other related orderings. J. Automated Reasoning 6(1), 39–49 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Melliès, P.-A.: On a duality between Kruskal and Dershowitz theorems. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 518–529. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  26. Nash-Williams, C.St.J.A.: On well-quasi-ordering finite trees. Proceedings Cambridge Phil. Soc. 59, 833–835 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  27. Newman, M.H.A.: On theories with a combinatorial definition of “equivalence”. Annals of Mathematics 43(2), 223–243 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  28. Plaisted, D.A.: Semantic confluence tests and completion methods. Information and Control 65(2/3), 182–215 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Porat, S., Francez, N.: Full-commutation and fair-termination in equational (and combined) term-rewriting systems. In: Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 21–41. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  30. Staples, J.: Church-Rosser theorems for replacement systems. In: Crosley, J. (ed.) Algebra and Logic. Lecture Notes in Mathematics, vol. 450, pp. 291–307. Springer, Heidelberg (1975)

    Chapter  Google Scholar 

  31. Struth, G.: Reasoning automatically about termination and refinement (Abstract). In: International Workshop on First-Order Theorem Proving (FTP 2007), Liverpool, UK (September 2007). Full Version at: http://www.dcs.shef.ac.uk/intranet/research/resmes/CS0710.pdf

  32. Struth, G.: Personal communication (November 2007)

    Google Scholar 

  33. “Terese” (Bezem, M., Klop, J.W., de Vrijer, R., eds.): Term Rewriting Systems. Cambridge University Press, Cambridge (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dershowitz, N. (2009). On Lazy Commutation. In: Grumberg, O., Kaminski, M., Katz, S., Wintner, S. (eds) Languages: From Formal to Natural. Lecture Notes in Computer Science, vol 5533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01748-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01748-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01747-6

  • Online ISBN: 978-3-642-01748-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics