Nothing Special   »   [go: up one dir, main page]

Skip to main content

Classification of Single-Trial EEG Based on Support Vector Clustering during Finger Movement

  • Conference paper
Advances in Neural Networks – ISNN 2009 (ISNN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5552))

Included in the following conference series:

Abstract

Classification of electroencephalogram (EEG) is an important and challenging issue for brain computer interface (BCI) system. In this paper, an algorithm based on common spatial subspace decomposition (CSSD) and support vector clustering (SVC) is proposed to classify single-trial EEG recording during left or right finger movement. The algorithm is tested by the dataset IV of “BCI competition 2003”, and the experimental result shows the proposed method, only using bereitschaftspotential (BP), rather than both BP and event-related desynchronization (ERD), has higher classification accuracy than the best one reported in the competition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-Computer Interface for Communication and Control. Journal of Clinical Neurophysiology 113, 767–791 (2002)

    Article  Google Scholar 

  2. Blankertz, B., et al.: The BCI Competition III: Validating Alternative Approaches to Actual BCI Problems. IEEE Transaction on Neural System and Rehabilitation Engineering 14, 153–159 (2006)

    Article  Google Scholar 

  3. Lehtonen, J., Jylänki, P., Kauhanen, L., Sams, M.: Online Classification of the Single EEG Trials During Finger Movements. IEEE Transactions on Biomedical Engineering 55(2), 713–720 (2008)

    Article  Google Scholar 

  4. Wang, Y., et al.: BCI Competition 2003-Data Set IV: An algorithm based on CSSD and FDA for Classifying Single-Trial EEG. IEEE Transactions on Biomedical Engineering 51(6), 1081–1086 (2004)

    Article  Google Scholar 

  5. Li, Y., Gao, X., Liu, H., Gao, S.: Classification of Single-Trial Electroencephalogram During Finger Movement. IEEE Transactions on Biomedical Engineering 51(6), 1019–1025 (2004)

    Article  Google Scholar 

  6. Li, Y., et al.: Single Trial EEG Classification During Finger Movement Task by Using Hidden Markov Models. In: 2nd International IEEE EMBS Conference on Neural Engineering, Arlington, Virginia, pp. 625–628 (2005)

    Google Scholar 

  7. Ranaweera, R.D., Talavage, T.M., Krishnan, A.: Time-frequency Features Differentiate Direction of Finger Movement in Cued and Self-paced Tasks. In: 2nd International IEEE EMBS Conference on Neural Engineering, Arlington, Virginia, pp. 551–554 (2005)

    Google Scholar 

  8. Pfurtscheller, G., Neuper, C., Flotzinger, D., Pregenzer, M.: EEG-Based Discrimination Between Imagination of Right and Left Hand Movement. Journal of Electro-encephalography and Clinical Neurophysiology 103, 642–651 (1997)

    Article  Google Scholar 

  9. Blankertz, B., et al.: Boosting Bit Rates and Error Detection for the Classification of Fast-Paced Motor Commands Based on Single-Trial EEG Analysis. IEEE Transactions on Neural System and Rehabilitation Engineering 11(2), 127–131 (2003)

    Article  Google Scholar 

  10. Wang, Y., Berg, P., Scherg, M.: Common Spatial Subspace Decomposition Applied to Analysis of Brain Responses Under Multiple Task Conditions: A Simulation Study. Journal of Clinical Neurophysiology 110, 604–614 (1999)

    Article  Google Scholar 

  11. Bashashati, A., Fatourechi, M., Ward, R.K.: A Survey of Signal Processing Algorithms in Brain-Computer Interfaces Based on Electrical Brain Signals. Journal of Neural Engineering 4(2), R32–R57 (2007)

    Article  Google Scholar 

  12. Shibasaki, H., Hallett, M.: What is the Bereitschaftspotential? Journal of Clinical Neurophysiology 117, 2341–2356 (2006)

    Article  Google Scholar 

  13. Müller-Gerking, J., Pfurtscheller, G., Flyvbjerg, H.: Designing Optimal Spatial Filters for Single-Trial EEG Classification in a Movement Task. Journal of Clinical Neuro-physiology 110, 787–798 (1999)

    Google Scholar 

  14. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, San Diego (1990)

    MATH  Google Scholar 

  15. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support Vector Clustering. Journal of Machine Learning Research 2, 125–137 (2001)

    MATH  Google Scholar 

  16. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: A Support Vector Clustering Method. In: 15th International Conference on Pattern Recognition, Barcelona, pp. 724–727 (2000)

    Google Scholar 

  17. Xu, R., Wunsch II, D.: Survey of Clustering Algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)

    Article  Google Scholar 

  18. Blankertz, B., Curio, G., Müller, K.-R.: Classifying Single Trial EEG: Towards Brain Computer Interfacing. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems (NIPS 2001), vol. 14, pp. 157–164 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, B., Wan, F. (2009). Classification of Single-Trial EEG Based on Support Vector Clustering during Finger Movement. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01510-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01510-6_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01509-0

  • Online ISBN: 978-3-642-01510-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics