Nothing Special   »   [go: up one dir, main page]

Skip to main content

On-Line Tuning of a Neural PID Controller Based on Variable Structure RBF Network

  • Conference paper
Advances in Neural Networks – ISNN 2009 (ISNN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5552))

Included in the following conference series:

Abstract

This paper presents the use of a variable structure radial basis function (RBF) network for identification in PID control scheme. The parameters of PID control are on-line tuned by a sequential learning RBF network, whose hidden units and connecting parameters are adapted on-line. The RBF-network-based PID controller simplifies modeling procedure by learning input-output samples while keep the advantages of traditional PID controller simultaneously. Simulation results of ship course control simulation demonstrate the applicability and effectiveness of the intelligent PID control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Roberts, G.N., Sutton, R., Zirilli, A., et al.: Intelligent Ship Autopilots-A Historical Perspective. Mechatr. 13, 1091–1103 (2003)

    Article  Google Scholar 

  2. Apostolikasn, G., Tzafestas, S.: On-line RBFNN Based Identification of Rapidly Time-Varying Nonlinear Systems with Optimal Structure-Adaptation. Math. and Comp. in Simulation 63, 1–13 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chng, E.S., Chen, S., Mulgrew, B.: Gradient Radial Basis Function Networks for Nonlinear and Nonstationary Time Series Prediction. IEEE Trans. Neur. Netw. 7, 190–194 (1996)

    Article  Google Scholar 

  4. Ghosh, J., Nag, A.: An Overview of Radial Basis Function Networks: New Advances in Design. Physica-Verlag, Heidelberg (2001)

    Book  Google Scholar 

  5. Platt, J.: A Resource Allocating Network for Function Interpolation. Neur. Comput. 3, 213–225 (1991)

    Article  MathSciNet  Google Scholar 

  6. Kadirkamanathan, V., Niranjan, M.: A Function Estimation Approach to Sequential Learning with Neural Network. Neur. Comput. 5, 954–975 (1993)

    Article  Google Scholar 

  7. Lu, Y.W., Sundararajan, N., Saratchandran, P.: Identification of time-varying nonlinear systems using minimal radial basis function neural networks. IEE Proc. Contr. Theor. Appl. 144, 202–208 (1997)

    Article  MATH  Google Scholar 

  8. Huang, G.B., Saratchandran, P., Sundararajan, N.: A Generalized Growing and Pruning RBF (GGAP-RBF) Neural Network for Function Approximation. IEEE Trans. Neur. Netw. 16, 57–67 (2005)

    Article  Google Scholar 

  9. Chen, S., Cowan, C.F.N., Grant, P.M.: Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks. IEEE Trans. Neur. Netw. 2, 302–309 (1991)

    Article  Google Scholar 

  10. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Upper Saddle River (1997)

    Google Scholar 

  11. Lu, Y.W., Sundararajan, N., Saratchandran, P.: A Sequential Learning Scheme for Function Approximation by Using Minimal Radial Basis Function Neural Networks. Neur. Comput. 9, 461–478 (1997)

    Article  MATH  Google Scholar 

  12. Chislett, M.S., Strom, J.T.: Planar Motion Mechanism Tests and Full-Scale Steering and Manoeuvring Predictions for a Mariner Class Vessel. Technical Report, Hydro and Aerodynamics Laboratory (1965)

    Google Scholar 

  13. Jia, X.L., Yang, Y.S.: The Mathematic Model of Ship Motion. Dalian Maritime University Press, Dalian (1999)

    Google Scholar 

  14. Zhang, Y., Hearn, G.E., Sen, P.: A Neural Network Approach to Ship Track-Keeping Control. IEEE J. Ocean. Eng. 21, 513–527 (1996)

    Article  Google Scholar 

  15. Chen, S., Wang, X.X., Harris, C.J.: NARX-Based Nonlinear System Identification Using Orthogonal Least Squares Basis Hunting. IEEE Trans. Contr. Syst. Tech. 16, 78–84 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yin, J., Bi, G., Dong, F. (2009). On-Line Tuning of a Neural PID Controller Based on Variable Structure RBF Network. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01510-6_124

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01510-6_124

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01509-0

  • Online ISBN: 978-3-642-01510-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics