Abstract
This paper presents the use of a variable structure radial basis function (RBF) network for identification in PID control scheme. The parameters of PID control are on-line tuned by a sequential learning RBF network, whose hidden units and connecting parameters are adapted on-line. The RBF-network-based PID controller simplifies modeling procedure by learning input-output samples while keep the advantages of traditional PID controller simultaneously. Simulation results of ship course control simulation demonstrate the applicability and effectiveness of the intelligent PID control strategy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Roberts, G.N., Sutton, R., Zirilli, A., et al.: Intelligent Ship Autopilots-A Historical Perspective. Mechatr. 13, 1091–1103 (2003)
Apostolikasn, G., Tzafestas, S.: On-line RBFNN Based Identification of Rapidly Time-Varying Nonlinear Systems with Optimal Structure-Adaptation. Math. and Comp. in Simulation 63, 1–13 (2003)
Chng, E.S., Chen, S., Mulgrew, B.: Gradient Radial Basis Function Networks for Nonlinear and Nonstationary Time Series Prediction. IEEE Trans. Neur. Netw. 7, 190–194 (1996)
Ghosh, J., Nag, A.: An Overview of Radial Basis Function Networks: New Advances in Design. Physica-Verlag, Heidelberg (2001)
Platt, J.: A Resource Allocating Network for Function Interpolation. Neur. Comput. 3, 213–225 (1991)
Kadirkamanathan, V., Niranjan, M.: A Function Estimation Approach to Sequential Learning with Neural Network. Neur. Comput. 5, 954–975 (1993)
Lu, Y.W., Sundararajan, N., Saratchandran, P.: Identification of time-varying nonlinear systems using minimal radial basis function neural networks. IEE Proc. Contr. Theor. Appl. 144, 202–208 (1997)
Huang, G.B., Saratchandran, P., Sundararajan, N.: A Generalized Growing and Pruning RBF (GGAP-RBF) Neural Network for Function Approximation. IEEE Trans. Neur. Netw. 16, 57–67 (2005)
Chen, S., Cowan, C.F.N., Grant, P.M.: Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks. IEEE Trans. Neur. Netw. 2, 302–309 (1991)
Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Upper Saddle River (1997)
Lu, Y.W., Sundararajan, N., Saratchandran, P.: A Sequential Learning Scheme for Function Approximation by Using Minimal Radial Basis Function Neural Networks. Neur. Comput. 9, 461–478 (1997)
Chislett, M.S., Strom, J.T.: Planar Motion Mechanism Tests and Full-Scale Steering and Manoeuvring Predictions for a Mariner Class Vessel. Technical Report, Hydro and Aerodynamics Laboratory (1965)
Jia, X.L., Yang, Y.S.: The Mathematic Model of Ship Motion. Dalian Maritime University Press, Dalian (1999)
Zhang, Y., Hearn, G.E., Sen, P.: A Neural Network Approach to Ship Track-Keeping Control. IEEE J. Ocean. Eng. 21, 513–527 (1996)
Chen, S., Wang, X.X., Harris, C.J.: NARX-Based Nonlinear System Identification Using Orthogonal Least Squares Basis Hunting. IEEE Trans. Contr. Syst. Tech. 16, 78–84 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yin, J., Bi, G., Dong, F. (2009). On-Line Tuning of a Neural PID Controller Based on Variable Structure RBF Network. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01510-6_124
Download citation
DOI: https://doi.org/10.1007/978-3-642-01510-6_124
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01509-0
Online ISBN: 978-3-642-01510-6
eBook Packages: Computer ScienceComputer Science (R0)