Nothing Special   »   [go: up one dir, main page]

Skip to main content

Higher Order Neurodynamics of Associative Memory for Sequential Patterns

  • Conference paper
Advances in Neural Networks – ISNN 2009 (ISNN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5552))

Included in the following conference series:

Abstract

This paper describes higher order neurodynamics of associative memory for sequential patterns using a statistical method. First, the statistical analysis of direct correlations between the cross talk noise terms for higher order neural networks is made. Further, it is shown that storage capacities for k = 1, 2 and 3 dimensional cases are 0.263n, \(0.207\binom{n}{2}\) and \(0.180\binom{n}{3}\), respectively, where n is the number of neurons and \(\binom{n}{k}\) means the combination of k from n. The result for the one dimensional case is in fairly general agreement with Meir’s result, 0.269n, obtained by the replica theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Perseus Books Publishing (1991)

    Google Scholar 

  2. Gupta, M.M., Jin, L., Homma, N.: Static and Dynamic Neural Networks. IEEE Press, Los Alamitos (2003)

    Book  Google Scholar 

  3. Amari, S., Maginu, K.: Statistical Neurodynamics of Associative Memory. Neural Networks 1, 63–73 (1988)

    Article  Google Scholar 

  4. Amari, S.: Mathematical Foundations of Neurocomputing. Proceedings of the IEEE 79(9), 1443–1463 (1990)

    Article  Google Scholar 

  5. Meir, R., Domany, E.: Exact Solution of A Layered Neural Network Memory. Physical Rev. Letter 59, 359–362 (1987)

    Article  Google Scholar 

  6. Okada, M.: Notions of Associative Memory and Sparse Coding. Neural Networks 9(8), 1429–1458 (1996)

    Article  MATH  Google Scholar 

  7. Amari, S.: Statistical Neurodynamics of Various Versions of Correlation Associative Memory. In: Proceedings of IEEE conference on Neural Networks, pp. I-633–I-640 (1988)

    Google Scholar 

  8. Yatsuki, S., Miyajima, H.: Associative Ability of Higher Order Neural Networks. In: Proc. ICNN 1997, vol. 2, pp. 1299–1304 (1997)

    Google Scholar 

  9. Yatsuki, S., Miyajima, H.: Statistical Dynamics of Associative Memory for Higher Order Neural Networks. In: IEEE Proc. ISCAS 2000, vol. 3, pp. 670–673 (2000)

    Google Scholar 

  10. Abbott, L.F., Arian, Y.: Storage Capacity of Generalized Networks. Physics Review A 36(10), 5091–5094 (1987)

    Article  Google Scholar 

  11. Nishimori, H., Ozeki, T.: Retrieval Dynamics of Associative Memory of the Hopfield Type. J. Phys. A: Math. Gen. 26, 859–971 (1993)

    Article  MATH  Google Scholar 

  12. Kawamura, M., Okada, M.: Transient Dynamics for Sequence Processing Neural Networks. Journal of Physics A: Mathematical and General 35, 253–266 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miyajima, H., Shigei, N., Yatsuki, S. (2009). Higher Order Neurodynamics of Associative Memory for Sequential Patterns. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01510-6_100

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01510-6_100

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01509-0

  • Online ISBN: 978-3-642-01510-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics