Nothing Special   »   [go: up one dir, main page]

Skip to main content

Semi-supervised Learning with Multimodal Perturbation

  • Conference paper
Advances in Neural Networks – ISNN 2009 (ISNN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5551))

Included in the following conference series:

  • 1111 Accesses

Abstract

In this paper, a new co-training style semi-supervised algorithm is proposed, which employs Bagging based multimodal perturbation to label the unlabeled data. In detail, through perturbing the training data, input attributes and learning parameters together, the algorithm generates accurate but diversity k-nearest neighbor classifiers. These classifiers are refined using unlabeled examples which are labeled if the other classifiers agree on the labeling. Experimental results show that the semi-supervised algorithm could effectively improve the classification generalization by utilizing the unlabeled data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Olivier, C., Bernhard, S., Alexander, Z.: Semi-Supervised Learning. MIT Press, Cambridge (2006)

    Google Scholar 

  2. Zhu, X.: Semi-supervised Learning Literature Survey. Technical Report, University of Wisconsin, Madison (2005)

    Google Scholar 

  3. Blum, A., Mitchell, T.: Combining Labeled and Unlabeled Data with Co-training. In: 11th Annual Conference on Computational Learning Theory, Wisconsin, MI, pp. 92–100 (1998)

    Google Scholar 

  4. Goldman, S., Zhou, Y.: Enhancing Supervised Learning with Unlabeled Data. In: 17th International Conference on Machine Learning, San Francisco, CA, pp. 327–334 (2000)

    Google Scholar 

  5. Zhou, Z.H., Li, M.: Tri-training: Exploiting Unlabeled Data Using Three Classifiers. IEEE Transactions on Knowledge and Data Engineering 17, 1529–1541 (2005)

    Article  Google Scholar 

  6. Li, M., Zhou, Z.H.: Improve Computer-aided Diagnosis with Machine Learning Techniques Using Undiagnosed Samples. IEEE Transactions on Systems, Man and Cybernetic -Part A 37, 1088–1098 (2007)

    Article  Google Scholar 

  7. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)

    MATH  Google Scholar 

  8. Zhou, Z.H., Yu, Y.: Ensembling Local Learners through Multimodal Perturbation. IEEE Transactions on Systems, Man, and Cybernetics - Part B 35, 725–735 (2005)

    Article  Google Scholar 

  9. Krogh, A., Vedelsby, J.: Neural Network Ensembles, Cross Validation and Active Learning. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 231–238. MIT Press, Cambridge (1995)

    Google Scholar 

  10. Ho, T.K.: Nearest Neighbors in Random Subspaces. In: Amin, A., Dori, D., Pudil, P., Freeman, H. (eds.). LNCS, pp. 640–648. Springer, Berlin (1998)

    Google Scholar 

  11. Wilson, D.R., Martinez, T.R.: Improved Heterogeneous Distance Functions. Journal of Artificial Intelligence Research, 1–34 (1997)

    Google Scholar 

  12. Blake, C., Keogh, E., Merz, C.J.: UCI Repository of Machine Learning Databases, http://www.ics.uci.edu/~mlearn/MLRepository.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Su, L., Liao, H., Yu, Z., Tang, J. (2009). Semi-supervised Learning with Multimodal Perturbation. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5551. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01507-6_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01507-6_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01506-9

  • Online ISBN: 978-3-642-01507-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics