Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Stigmergy-Based Algorithm for Continuous Optimization Tested on Real-Life-Like Environment

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5484))

Included in the following conference series:

Abstract

This paper presents a solution to the global optimization of continuous functions by the Differential Ant-Stigmergy Algorithm (DASA). The DASA is a newly developed algorithm for continuous optimization problems, utilizing the stigmergic behavior of the artificial ant colonies. It is applied to the high-dimensional real-parameter optimization with low number of function evaluations. The performance of the DASA is evaluated on the set of 25 benchmark functions provided by CEC’2005 Special Session on Real Parameter Optimization. Furthermore, non-parametric statistical comparisons with eleven state-of-the-art algorithms demonstrate the effectiveness and efficiency of the DASA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alonso, S., Jimenez, J., Carmona, H., Galvan, B., Winter, G.: Performance of a Flexible Evolutionary Algorithm, http://www.ntu.edu.sg/home/EPNSugan

  2. Auger, A., Hansen, N.: A Restart CMA Evolution Strategy With Increasing Population Size. In: Proc. CEC 2005, Edinburg, UK, pp. 1769–1776 (2005)

    Google Scholar 

  3. Auger, A., Hansen, N.: Performance Evaluation of an Advanced Local Search Evolutionary Algorithm. In: Proc. CEC 2005, Edinburg, UK, pp. 1777–1784 (2005)

    Google Scholar 

  4. Ballester, P.J., Stephenson, J., Carter, J.N., Gallagher, K.: Real-parameter optimization performance study on the CEC 2005 benchmark with SPC- PNX. In: Proc. CEC 2005, Edinburg, UK, pp. 498–505 (2005)

    Google Scholar 

  5. Bilchev, G., Parmee, I.C.: The ant colony metaphor for searching continuous design spaces. LNCS, vol. 993, pp. 25–39. Springer, Heidelberg (1995)

    Google Scholar 

  6. Bui, L.T., Shan, Y., Qi, F., Abbass, H.A.: Comparing Two Versions of Differential Evolution in Real Parameter Optimization, http://www.ntu.edu.sg/home/EPNSugan

  7. Chen, C., Tian, X.Y., Zou, X.Y., Cai, P.X., Mo, J.Y.: A hybrid ant colony optimization for the prediction of protein secondary structure. Chinese Chem. Lett. 16, 1551–1554 (2005)

    Google Scholar 

  8. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Dréo, J., Siarry, P.: A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima continuous functions. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 216–221. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937)

    Article  MATH  Google Scholar 

  11. Gao, W.: Immunized continuous ant colony algorithm. In: Proc. 26th Chinese Control Conf., Zhangjiajie, China, pp. 705–709 (2007)

    Google Scholar 

  12. García-Martínez, C., Lozano, M.: Hybrid Real-Coded genetic Algorithm with Female and Male Differentation. In: Proc. CEC 2005, Edinburg, UK, pp. 896–903 (2005)

    Google Scholar 

  13. Ge, Y., Meng, Q.C., Yan, C.J., Xu, J.: A hybrid ant colony algorithm for global optimization of continuous multi-extreme functions. In: Proc. 3rd Int. Conf. Machine Lear. Cyber., Shanghai, China, pp. 2427–2432 (2004)

    Google Scholar 

  14. Ho, S.L., Yang, S., Ni, G., Machado, J.M.: A modified ant colony optimization algorithm modeled on tabu-search methods. IEEE T. Magn. 42, 1195–1198 (2006)

    Article  Google Scholar 

  15. Hu, X.M., Zhang, J., Li, Y.: Orthogonal methods based ant colony search for solving continuous optimization problems. J. Comput. Sci. Technol. 23, 2–18 (2008)

    Article  Google Scholar 

  16. Huang, H., Hao, Z.: ACO for continuous optimization based on discrete encoding. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 504–505. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Iman, R.L., Davenport, J.M.: Approxymations of the critical region of the Friedman statistic. Commun. Stat. 9, 571–595 (1980)

    Article  MATH  Google Scholar 

  18. Kong, M., Tian, P.: A direct application of ant colony optimization to function optimization problem in continuous domain. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 324–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Kong, M., Tian, P.: A binary ant colony optimization for the unconstrained function optimization problem. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS, vol. 3801, pp. 682–687. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Korošec, P., Šilc, J.: The multilevel ant stigmergy algorithm: An industrial case study. In: Proc. 7th Int. Conf. Comput. Intell. Natural Comput, Salt Lake City, UT, pp. 475–478 (2005)

    Google Scholar 

  21. Korošec, P., Šilc, J., Oblak, K., Kosel, F.: The differential ant-stigmergy algorithm: An experimental evaluation and a real-world application. In: Proc. CEC 2007, Singapore, pp. 157–164 (2007)

    Google Scholar 

  22. Li, Y.J., Wu, T.J.: An adaptive ant colony system algorithm for continuous-space optimization problems. J. Zhejiang Univ. - Sc. A 4, 40–46 (2003)

    Article  Google Scholar 

  23. Molina, D., Herrera, F., Lozano, M.: Adaptive Local Search Parameters for Real-Coded Memetic Algorithms. In: Proc. CEC 2005, Edinburg, UK, pp. 888–895 (2005)

    Google Scholar 

  24. Monmarché, V.G., Slimane, M.: On how pachycondyla apicalis ants suggest a new search algorithm. Future Gener. Comp. Sy. 16, 937–946 (2000)

    Article  Google Scholar 

  25. Nemenyi, P.B.: Distribution-free Multiple Comparison. PhD Thesis, Princeton University (1963)

    Google Scholar 

  26. Pošík, P.: Real-Parameter Optimization Using the Mutation Step Co-Evolution. In: Proc. CEC 2005, Edinburg, UK, pp. 872–879 (2005)

    Google Scholar 

  27. Pourtakdoust, S.H., Nobahari, H.: An extension of ant colony system to continuous optimization problems. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 294–301. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  28. Rönkkönen, J., Kukkonen, S., Price, K.V.: Real-Parameter Optimization Using the Mutation Step Co-Evolution. In: Proc. CEC 2005, Edinburg, UK, pp. 506–513 (2005)

    Google Scholar 

  29. Sheskin, D.J.: Handbook of Parametric and Nonmparametric Statistical Procedures. CRC Press, Boca Raton (2000)

    MATH  Google Scholar 

  30. Sinha, A., Tiwari, S., Deb, K.: A Population-Based, Steady-State Procedure for Real-Parameter Optimization. In: Proc. CEC 2005, Edinburg, UK, pp. 514–521 (2005)

    Google Scholar 

  31. Socha, K.: ACO for continuous and mixed-variable optimization. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  32. Socha, K., Blum, C.: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training. Neural Comput. Appl. 16, 235–247 (2007)

    Article  Google Scholar 

  33. Stützle, T., Dorigo, M.: An experimental study of the simple ant colony optimization algorithm. In: Proc. WSES Int. Conf. Evol. Comput., Tenerife, Spain, pp. 253–258 (2001)

    Google Scholar 

  34. Suganthan, P.N., Hansen, N., Liang, J.J., Chen, Y.P., Auger, A., Tiwari, S.: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. Technical Report, Nanyang Technological University, Singapore (May 2005), http://www.ntu.edu.sg/home/EPNSugan

  35. Tsutsui, S.: Aggregation pheromone system: A real-parameter optimization algorithm using aggregation pheromones as the base metaphor. T. Jpn. Soc. Artif. Intell. 20, 76–83 (2005)

    Article  Google Scholar 

  36. Wodrich, M., Bilchev, G.: Cooperative distributed search: The ant’s way. Control Cybern. 26, 413–446 (1997)

    MathSciNet  MATH  Google Scholar 

  37. Yuan, B., Gallagher, M.: Experimental Results for the Special Session on Real-Parameter Optimization at CEC 2005: A Simple, Continuous EDA. In: Proc. CEC 2005, Edinburg, UK, pp. 1792–1799 (2005)

    Google Scholar 

  38. Zar, J.H.: Biostatistical Analysis. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Korošec, P., Šilc, J. (2009). A Stigmergy-Based Algorithm for Continuous Optimization Tested on Real-Life-Like Environment. In: Giacobini, M., et al. Applications of Evolutionary Computing. EvoWorkshops 2009. Lecture Notes in Computer Science, vol 5484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01129-0_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01129-0_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01128-3

  • Online ISBN: 978-3-642-01129-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics