Abstract
This paper presents a solution to the global optimization of continuous functions by the Differential Ant-Stigmergy Algorithm (DASA). The DASA is a newly developed algorithm for continuous optimization problems, utilizing the stigmergic behavior of the artificial ant colonies. It is applied to the high-dimensional real-parameter optimization with low number of function evaluations. The performance of the DASA is evaluated on the set of 25 benchmark functions provided by CEC’2005 Special Session on Real Parameter Optimization. Furthermore, non-parametric statistical comparisons with eleven state-of-the-art algorithms demonstrate the effectiveness and efficiency of the DASA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alonso, S., Jimenez, J., Carmona, H., Galvan, B., Winter, G.: Performance of a Flexible Evolutionary Algorithm, http://www.ntu.edu.sg/home/EPNSugan
Auger, A., Hansen, N.: A Restart CMA Evolution Strategy With Increasing Population Size. In: Proc. CEC 2005, Edinburg, UK, pp. 1769–1776 (2005)
Auger, A., Hansen, N.: Performance Evaluation of an Advanced Local Search Evolutionary Algorithm. In: Proc. CEC 2005, Edinburg, UK, pp. 1777–1784 (2005)
Ballester, P.J., Stephenson, J., Carter, J.N., Gallagher, K.: Real-parameter optimization performance study on the CEC 2005 benchmark with SPC- PNX. In: Proc. CEC 2005, Edinburg, UK, pp. 498–505 (2005)
Bilchev, G., Parmee, I.C.: The ant colony metaphor for searching continuous design spaces. LNCS, vol. 993, pp. 25–39. Springer, Heidelberg (1995)
Bui, L.T., Shan, Y., Qi, F., Abbass, H.A.: Comparing Two Versions of Differential Evolution in Real Parameter Optimization, http://www.ntu.edu.sg/home/EPNSugan
Chen, C., Tian, X.Y., Zou, X.Y., Cai, P.X., Mo, J.Y.: A hybrid ant colony optimization for the prediction of protein secondary structure. Chinese Chem. Lett. 16, 1551–1554 (2005)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)
Dréo, J., Siarry, P.: A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima continuous functions. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 216–221. Springer, Heidelberg (2002)
Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937)
Gao, W.: Immunized continuous ant colony algorithm. In: Proc. 26th Chinese Control Conf., Zhangjiajie, China, pp. 705–709 (2007)
García-Martínez, C., Lozano, M.: Hybrid Real-Coded genetic Algorithm with Female and Male Differentation. In: Proc. CEC 2005, Edinburg, UK, pp. 896–903 (2005)
Ge, Y., Meng, Q.C., Yan, C.J., Xu, J.: A hybrid ant colony algorithm for global optimization of continuous multi-extreme functions. In: Proc. 3rd Int. Conf. Machine Lear. Cyber., Shanghai, China, pp. 2427–2432 (2004)
Ho, S.L., Yang, S., Ni, G., Machado, J.M.: A modified ant colony optimization algorithm modeled on tabu-search methods. IEEE T. Magn. 42, 1195–1198 (2006)
Hu, X.M., Zhang, J., Li, Y.: Orthogonal methods based ant colony search for solving continuous optimization problems. J. Comput. Sci. Technol. 23, 2–18 (2008)
Huang, H., Hao, Z.: ACO for continuous optimization based on discrete encoding. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 504–505. Springer, Heidelberg (2006)
Iman, R.L., Davenport, J.M.: Approxymations of the critical region of the Friedman statistic. Commun. Stat. 9, 571–595 (1980)
Kong, M., Tian, P.: A direct application of ant colony optimization to function optimization problem in continuous domain. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 324–331. Springer, Heidelberg (2006)
Kong, M., Tian, P.: A binary ant colony optimization for the unconstrained function optimization problem. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS, vol. 3801, pp. 682–687. Springer, Heidelberg (2005)
Korošec, P., Šilc, J.: The multilevel ant stigmergy algorithm: An industrial case study. In: Proc. 7th Int. Conf. Comput. Intell. Natural Comput, Salt Lake City, UT, pp. 475–478 (2005)
Korošec, P., Šilc, J., Oblak, K., Kosel, F.: The differential ant-stigmergy algorithm: An experimental evaluation and a real-world application. In: Proc. CEC 2007, Singapore, pp. 157–164 (2007)
Li, Y.J., Wu, T.J.: An adaptive ant colony system algorithm for continuous-space optimization problems. J. Zhejiang Univ. - Sc. A 4, 40–46 (2003)
Molina, D., Herrera, F., Lozano, M.: Adaptive Local Search Parameters for Real-Coded Memetic Algorithms. In: Proc. CEC 2005, Edinburg, UK, pp. 888–895 (2005)
Monmarché, V.G., Slimane, M.: On how pachycondyla apicalis ants suggest a new search algorithm. Future Gener. Comp. Sy. 16, 937–946 (2000)
Nemenyi, P.B.: Distribution-free Multiple Comparison. PhD Thesis, Princeton University (1963)
Pošík, P.: Real-Parameter Optimization Using the Mutation Step Co-Evolution. In: Proc. CEC 2005, Edinburg, UK, pp. 872–879 (2005)
Pourtakdoust, S.H., Nobahari, H.: An extension of ant colony system to continuous optimization problems. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 294–301. Springer, Heidelberg (2004)
Rönkkönen, J., Kukkonen, S., Price, K.V.: Real-Parameter Optimization Using the Mutation Step Co-Evolution. In: Proc. CEC 2005, Edinburg, UK, pp. 506–513 (2005)
Sheskin, D.J.: Handbook of Parametric and Nonmparametric Statistical Procedures. CRC Press, Boca Raton (2000)
Sinha, A., Tiwari, S., Deb, K.: A Population-Based, Steady-State Procedure for Real-Parameter Optimization. In: Proc. CEC 2005, Edinburg, UK, pp. 514–521 (2005)
Socha, K.: ACO for continuous and mixed-variable optimization. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 25–36. Springer, Heidelberg (2004)
Socha, K., Blum, C.: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training. Neural Comput. Appl. 16, 235–247 (2007)
Stützle, T., Dorigo, M.: An experimental study of the simple ant colony optimization algorithm. In: Proc. WSES Int. Conf. Evol. Comput., Tenerife, Spain, pp. 253–258 (2001)
Suganthan, P.N., Hansen, N., Liang, J.J., Chen, Y.P., Auger, A., Tiwari, S.: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. Technical Report, Nanyang Technological University, Singapore (May 2005), http://www.ntu.edu.sg/home/EPNSugan
Tsutsui, S.: Aggregation pheromone system: A real-parameter optimization algorithm using aggregation pheromones as the base metaphor. T. Jpn. Soc. Artif. Intell. 20, 76–83 (2005)
Wodrich, M., Bilchev, G.: Cooperative distributed search: The ant’s way. Control Cybern. 26, 413–446 (1997)
Yuan, B., Gallagher, M.: Experimental Results for the Special Session on Real-Parameter Optimization at CEC 2005: A Simple, Continuous EDA. In: Proc. CEC 2005, Edinburg, UK, pp. 1792–1799 (2005)
Zar, J.H.: Biostatistical Analysis. Prentice-Hall, Englewood Cliffs (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Korošec, P., Šilc, J. (2009). A Stigmergy-Based Algorithm for Continuous Optimization Tested on Real-Life-Like Environment. In: Giacobini, M., et al. Applications of Evolutionary Computing. EvoWorkshops 2009. Lecture Notes in Computer Science, vol 5484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01129-0_77
Download citation
DOI: https://doi.org/10.1007/978-3-642-01129-0_77
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01128-3
Online ISBN: 978-3-642-01129-0
eBook Packages: Computer ScienceComputer Science (R0)