Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 201))

Abstract

Artificial Development is a field of Evolutionary Computation inspired by the developmental processes and cellular growth seen in nature. Multiple models of artificial development have been proposed in the past, which can be broadly divided into those based on biochemical processes and those based on a high level grammar. Two of the most important aspects to consider when designing a cellular growth model are the type of representation used to specify the final features of the system, and the abstraction level necessary to capture the properties to be modeled. Although advances in this field have been significant, there is much knowledge to be gained before a model that approaches the level of complexity found in living organisms can be built.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, R.W., Herman, G.T.: Celia - a cellular linear iterative array simulator. In: Proceedings of the fourth annual conference on Applications of simulation, pp. 64–73. Winter Simulation Conference (1970)

    Google Scholar 

  2. Banzhaf, W.: Artificial regulatory networks and genetic programming. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and Practice, ch. 4, pp. 43–62. Kluwer, Dordrecht (2003)

    Google Scholar 

  3. Beurier, G., Michel, F., Ferber, J.: A morphogenesis model for multiagent embryogeny. In: Rocha, L.M., Yaeger, L.S., Bedau, M.A., Floreano, D., Goldstone, R.L., Vespignani, A. (eds.) Proceedings of the Tenth International Conference on the Simulation and Synthesis of Living Systems (ALife X), pp. 84–90 (2006)

    Google Scholar 

  4. Bongard, J.: Evolving modular genetic regulatory networks. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), pp. 1872–1877. IEEE Press, Piscataway (2002)

    Chapter  Google Scholar 

  5. Bongard, J.C., Pfeifer, R.: Repeated structure and dissociation of genotypic and phenotypic complexity in artificial ontogeny. In: Proceedings of The Genetic and Evolutionary Computation Conference, pp. 829–836. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  6. Bowers, C.: Simulating evolution with a computational model of embryogeny: Obtaining robustness from evolved individuals. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS, vol. 3630, pp. 149–158. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Carroll, S.B.: Endless Forms Most Beautiful: The New Science of Evo Devo. W. W. Norton (2006)

    Google Scholar 

  8. Carroll, S.B., Grenier, J.K., Weatherbee, S.D.: From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design, 2nd edn. Blackwell Science, Malden (2004)

    Google Scholar 

  9. Chavoya, A., Duthen, Y.: An artificial development model for cell pattern generation. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS, vol. 4828, pp. 61–71. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Davidson, E.H.: The Regulatory Genome: Gene Regulatory Networks in Development And Evolution, 1st edn. Academic Press, London (2006)

    Google Scholar 

  11. Dawkins, R.: The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design. W. W. Norton (1996)

    Google Scholar 

  12. de Garis, H.: Genetic programming: artificial nervous systems artificial embryos and embryological electronics. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 117–123. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  13. de Garis, H.: Artificial embryology - the genetic programming of cellular differentiation. In: Artificial Life III Workshop, Santa Fe, New Mexico, USA (1992)

    Google Scholar 

  14. de Garis, H.: Artificial embryology: The genetic programming of an artificial embryo. In: Souček, B. (ed.) Dynamic, Genetic, and Chaotic Programming, pp. 373–393. John Wiley, New York (1992)

    Google Scholar 

  15. Devert, A., Bredeche, N., Schoenauer, M.: Robust multi-cellular developmental design. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 982–989. ACM Press, New York (2007)

    Chapter  Google Scholar 

  16. Eggenberger, P.: Creation of neural networks based on developmental and evolutionary principles. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 337–342. Springer, Heidelberg (1997)

    Google Scholar 

  17. Eggenberger, P.: Evolving morphologies of simulated 3D organisms based on differential gene expression. In: Harvey, I., Husbands, P. (eds.) Proceedings of the 4th European Conference on Artificial Life, pp. 205–213. Springer, Heidelberg (1997)

    Google Scholar 

  18. Eggenberger Hotz, P.: Combining developmental processes and their physics in an artificial evolutionary system to evolve shapes. In: Kumar, S., Bentley, P.J. (eds.) On Growth, Form and Computers, ch. 16, pp. 302–318. Academic Press, New York (2003)

    Chapter  Google Scholar 

  19. Eggenberger Hotz, P.: Asymmetric cell division and its integration with other developmental processes for artificial evolutionary systems. In: Proceedings of the 9th International Conference on Artificial Life IX (2004)

    Google Scholar 

  20. Flann, N., Hu, J., Bansal, M., Patel, V., Podgorski, G.: Biological development of cell patterns: Characterizing the space of cell chemistry genetic regulatory networks. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS, vol. 3630, pp. 57–66. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Fleischer, K., Barr, A.H.: A simulation testbed for the study of multicellular development: The multiple mechanisms of morphogenesis. In: Langdon, C. (ed.) Proceedings of the Workshop on Artificial Life ALIFE 1992, pp. 389–416. Addison-Wesley, Reading (1992)

    Google Scholar 

  22. Gershenson, C.: Introduction to random boolean networks. In: Bedau, M., Husbands, P., Hutton, T., Kumar, S., Susuki, H. (eds.) Worshop and Tutorial Proceedings, Ninth International Conference on the Simulation and Synthesis of Living Systems (ALife IX), pp. 160–173 (2004)

    Google Scholar 

  23. Gierer, A.: Generation of biological patterns and form: Some physical, mathematical, and logical aspects. Prog. Biophys. Molec. Biol. 37, 1–47 (1981)

    Article  MathSciNet  Google Scholar 

  24. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Article  Google Scholar 

  25. Gordon, T.G.W., Bentley, P.J.: Bias and scalability in evolutionary development. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 83–90. ACM Press, New York (2005)

    Chapter  Google Scholar 

  26. Hallinan, J., Wiles, J.: Asynchronous dynamics of an artificial genetic regulatory network. In: Artificial Life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems, pp. 399–403. MIT Press, Cambridge (2004)

    Google Scholar 

  27. Hallinan, J., Wiles, J.: Evolving genetic regulatory networks using an artificial genome. In: CRPIT 2004: Proceedings of the second conference on Asia-Pacific bioinformatics, pp. 291–296. Australian Computer Society, Inc., Darlinghurst (2004)

    Google Scholar 

  28. Hanan, J.S.: Parametric l-systems and their application to the modelling and visualization of plants. Ph.D. thesis, University of Regina (1992)

    Google Scholar 

  29. Harding, S.L., Miller, J.F., Banzhaf, W.: Self-modifying cartesian genetic programming. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 1021–1028. ACM Press, New York (2007)

    Chapter  Google Scholar 

  30. Herman, G.T., Liu, W.H.: The daughter of celia, the french flag and the firing squad. In: WSC 1973: Proceedings of the 6th conference on Winter simulation, p. 870. ACM, New York (1973)

    Chapter  Google Scholar 

  31. Heudin, J.C.: L’évolution au bord du chaos. Hermes, Paris, France (1998)

    Google Scholar 

  32. Jakobi, N.: Harnessing morphogenesis. In: International Conference on Information Processing in Cells and Tissues, pp. 29–41 (1995)

    Google Scholar 

  33. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22, 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  34. Kauffman, S.A.: Gene regulation networks: A theory for their global structure and behavior. Current Topics in Dev. Biol. 6, 145 (1971)

    Article  Google Scholar 

  35. Kauffman, S.A.: The large-scale structure and dynamics of gene control circuits: An ensembre approach. Journal of Theoretical Biology 44, 167 (1974)

    Article  Google Scholar 

  36. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  37. Kauffman, S.A.: Investigations. Oxford University Press, Oxford (2004)

    Google Scholar 

  38. Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex Systems 4, 461–476 (1990)

    MATH  Google Scholar 

  39. Kitano, H.: A simple model of neurogenesis and cell differentiation based on evolutionary large-scale chaos. Artificial Life 2(1), 79–99 (1994)

    Article  MathSciNet  Google Scholar 

  40. Kitano, H., Hamahashi, S., Kitazawa, J., Luke, S.: The perfect C. elegans project: an initial report. Artificial Life 4(2), 141–156 (1998)

    Article  Google Scholar 

  41. Knabe, J.F., Nehaniv, C.L., Schilstra, M.J.: The essential motif that wasn’t there: Topological and lesioning analysis of evolved generic regulatory networks. In: Proceedings of the 2007 IEEE Symposium on Artificial Life (CI-ALife 2007), pp. 47–53. IEEE Computational Intelligence Society (2007)

    Google Scholar 

  42. Knabe, J.F., Nehaniv, C.L., Schilstra, M.J., Quick, T.: Evolving biological clocks using genetic regulatory networks. In: Rocha, L.M., Yaeger, L.S., Bedau, M.A., Floreano, D., Goldstone, R.L., Vespignani, A. (eds.) Proceedings of the Artificial Life X Conference (Alife 10), pp. 15–21. MIT Press, Cambridge (2006)

    Google Scholar 

  43. Kumar, S., Bentley, P.J.: Computational embryology: past, present and future. In: Advances in evolutionary computing: theory and applications, pp. 461–477. Springer, New York (2003)

    Google Scholar 

  44. Kumar, S., Bentley, P.J.: An introduction to computational development. In: Kumar, S., Bentley, P.J. (eds.) On Growth, Form and Computers, ch. 1, pp. 1–44. Academic Press, New York (2003)

    Chapter  Google Scholar 

  45. Kuo, P.D., Banzhaf, W.: Small world and scale-free network topologies in an artificial regulatory network model. In: Pollack, J., Bedau, M., Husbands, P., Ikegami, T., Watson, R. (eds.) Proceedings of Artificial Life IX (ALIFE-9), Boston, USA, pp. 404–409. MIT Press, Cambridge (2004)

    Google Scholar 

  46. Kuo, P.D., Leier, A., Banzhaf, W.: Evolving dynamics in an artificial regulatory network model. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 571–580. Springer, Heidelberg (2004)

    Google Scholar 

  47. Langton, C.: Computation at the edge of chaos: Phase transitions and emergent computation. Physica D 42, 12–37 (1990)

    Article  MathSciNet  Google Scholar 

  48. Lindenmayer, A.: Mathematical models for cellular interaction in development, Parts I and II. Journal of Theoretical Biology 18, 280–315 (1968)

    Article  Google Scholar 

  49. Lindenmayer, A.: Developmental systems without cellular interaction, their languages and grammars. Journal of Theoretical Biology 30, 455–484 (1971)

    Article  Google Scholar 

  50. Lindenmayer, A., Rozenberg, G.: Developmental systems and languages. In: STOC 1972: Proceedings of the fourth annual ACM symposium on Theory of computing, pp. 214–221. ACM Press, New York (1972)

    Chapter  Google Scholar 

  51. Mech, R., Prusinkiewicz, P.: Visual models of plants interacting with their environment. In: Proceedings of SIGGRAPH 1996, pp. 397–410 (1996)

    Google Scholar 

  52. Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, London (1982)

    Google Scholar 

  53. Meinhardt, H.: Models of biological pattern formation: common mechanism in plant and animal development. Int. J. Dev. Biol. 40, 123–134 (1996)

    Google Scholar 

  54. Meinhardt, H.: The algorithmic beauty of seashells. Springer, Heidelberg (1998)

    Google Scholar 

  55. Meinhardt, H.: Models for pattern formation and the position-specific activation of genes. In: Kumar, S., Bentley, P.J. (eds.) On Growth, Form and Computers, ch. 7, pp. 135–155. Academic Press, London (2003)

    Chapter  Google Scholar 

  56. Meinhardt, H., Gierer, A.: Pattern formation by local self-activation and lateral inhibition. BioEssays 22(8), 753–760 (2000)

    Article  Google Scholar 

  57. Miller, J.F., Banzhaf, W.: Evolving the program for a cell: from French flags to Boolean circuits. In: Kumar, S., Bentley, P.J. (eds.) On Growth, Form and Computers, pp. 278–301. Academic Press, London (2003)

    Chapter  Google Scholar 

  58. Prusinkiewicz, P.: Modeling and Vizualization of Biological Structures. In: Proceeding of Graphics Interface 1993, pp. 128–137 (1993)

    Google Scholar 

  59. Prusinkiewicz, P.: Visual models of morphogenesis. In: Langton, C.G. (ed.) Artificial life: an overview, pp. 61–74. The MIT Press, Cambridge (1997)

    Google Scholar 

  60. Prusinkiewicz, P., Hanan, J., Mech, R.: An l-system-based plant modeling language. In: Münch, M., Nagl, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 395–410. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  61. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  62. Quick, T., Nehaniv, C.L., Dautenhahn, K., Roberts, G.: Evolving embodied genetic regulatory network-driven control systems. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 266–277. Springer, Heidelberg (2003)

    Google Scholar 

  63. Reil, T.: Dynamics of gene expression in an artificial genome - implications for biological and artificial ontogeny. In: Proceedings of the 5th European Conference on Artificial Life (ECAL), pp. 457–466. Springer, New York (1999)

    Google Scholar 

  64. Smith, A.R.: Plants, fractals, and formal languages. In: SIGGRAPH 1984: Proceedings of the 11th annual conference on Computer graphics and interactive techniques, pp. 1–10. ACM Press, New York (1984)

    Chapter  Google Scholar 

  65. Stanley, K.O.: Compositional pattern producing networks: A novel abstraction of development. Genetic Programming and Evolvable Machines Special Issue on Developmental Systems 8(2), 131–162 (2007)

    Article  MathSciNet  Google Scholar 

  66. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9(2), 93–130 (2003)

    Article  Google Scholar 

  67. Stewart, F., Taylor, T., Konidaris, G.: Metamorph: Experimenting with genetic regulatory networks for artificial development. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS, vol. 3630, pp. 108–117. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  68. Sulston, J., Du, Z., Thomas, K., Wilson, R., Hillier, L., Staden, R., Halloran, N., Green, P., Thierry-Mieg, J., Qiu, L.: The C. elegans genome sequencing project: a beginning. Nature 356(6364), 37–41 (1992)

    Article  Google Scholar 

  69. Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 237(641), 37–72 (1952)

    Article  Google Scholar 

  70. Tyrrell, A.M., Greensted, A.J.: Evolving dependability. J. Emerg. Technol. Comput. Syst. 3(2), 7 (2007)

    Article  Google Scholar 

  71. Willadsen, K., Wiles, J.: Dynamics of gene expression in an artificial genome. In: Proceedings of the IEEE 2003 Congress on Evolutionary Computation, pp. 199–206. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  72. Wolpert, L.: The French flag problem: a contribution to the discussion on pattern development and regulation. In: Waddington, C. (ed.) Towards a Theoretical Biology, pp. 125–133. Edinburgh University Press, New York (1968)

    Google Scholar 

  73. Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969)

    Article  Google Scholar 

  74. Wolpert, L.: Positional information and pattern formation. Phil. Trans. R. Soc. Lond. B 295(1078), 441–450 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chavoya, A. (2009). Artificial Development. In: Hassanien, AE., Abraham, A., Vasilakos, A.V., Pedrycz, W. (eds) Foundations of Computational, Intelligence Volume 1. Studies in Computational Intelligence, vol 201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01082-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01082-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01081-1

  • Online ISBN: 978-3-642-01082-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics