Nothing Special   »   [go: up one dir, main page]

Skip to main content

From Gene Trees to Species Trees through a Supertree Approach

  • Conference paper
Language and Automata Theory and Applications (LATA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5457))

Abstract

Gene trees are leaf-labeled trees inferred from molecular sequences. Due to duplication events arising in genome evolution, gene trees usually have multiple copies of some labels, i.e. species. Inferring a species tree from a set of multi-labeled gene trees (MUL trees) is a well-known problem in computational biology. We propose a novel approach to tackle this problem, mainly to transform a collection of MUL trees into a collection of evolutionary trees, each containing single copies of labels. To that aim, we provide several algorithmic building stones and describe how they fit within a general species tree inference process. Most algorithms have a linear-time complexity, except for an FPT algorithm proposed for a problem that we show to be intractable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cotton, J., Page, R.: Rates and patterns of gene duplication and loss in the human genome. Proceedings of Royal Soceity of London 272, 277–283 (2005)

    Article  Google Scholar 

  2. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. Comput. 30, 729–752 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hallett, M.T., Lagergren, J.: New algorithms for the duplication-loss model. In: RECOMB 2000, Fourth Annual International Conference on Computational Molecular Biology, pp. 138–146 (2000)

    Google Scholar 

  4. Chen, K., Durand, D., Farach-Colton, M.: Notung: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7, 429–444 (2000)

    Article  Google Scholar 

  5. Vernot, B., Stolzer, M., Goldman, A., Durand, D.: Reconciliation with non-binary species trees. J. Comput. Biol. 15(8), 981–1006 (2008)

    Article  MathSciNet  Google Scholar 

  6. Chauve, C., Doyon, J.P., El-Mabrouk, N.: Gene family evolution by duplication, speciation, and loss. J. Comput. Biol. 15(8), 1043–1062 (2008)

    Article  MathSciNet  Google Scholar 

  7. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the Gene Lineage into its Species Lineage, a Parsimony Strategy Illustrated by Cladograms Constructed from Globin Sequences. Systematic Zoology 28(2), 132–163 (1979)

    Article  Google Scholar 

  8. Arvestad, L., Berglund, A., Lagergren, J., Sennblad, B.: Bayesian gene/species tree reconciliation and orthology analysis using MCMC. Bioinformatics 19(suppl. 1), 7–15 (2003)

    Article  Google Scholar 

  9. Durand, D., Halld–rsson, B., Vernot, B.: A hybrid micro-macroevolutionary approach to gene tree reconstruction. J. Comput. Biol. 13, 320–335 (2006)

    Article  MathSciNet  Google Scholar 

  10. Baum, B.R., Ragan, M.A.: The MRP method. In: Bininda-Emonds, O. (ed.) Phylogenetic supertrees: combining information to reveal the Tree of Life, pp. 17–34. Kluwer, Dordrecht (2004)

    Chapter  Google Scholar 

  11. Page, R.D.M.: Modified mincut supertrees. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 537–552. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Scornavacca, C., Berry, V., Lefort, V., Douzery, E.J.P., Ranwez, V.: Physic_ist: cleaning source trees to infer more informative supertrees. BMC Bioinformatics 9(8), 413 (2008)

    Article  Google Scholar 

  13. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 12–28 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comp. 10(3), 405–421 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bender, M.A., Farach-Colton, M.: The lca problem revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Berry, V., Semple, C.: Fast computation of supertrees for compatible phylogenies with nested taxa. Syst. Biol. 55, 270–288 (2006)

    Article  Google Scholar 

  18. Henzinger, M., King, V., Warnow, T.: Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica 24, 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Berry, V., Nicolas, F.: Improved parameterized complexity of the maximum agreement subtree and maximum compatible tree problems. IEEE/ACM Trans. Comput. Biol. Bioinformatics 3(3), 289–302 (2006)

    Article  Google Scholar 

  20. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston (1974)

    MATH  Google Scholar 

  21. Ranwez, V., Berry, V., Criscuolo, A., Fabre, P., Guillemot, S., Scornavacca, C., Douzery, E.: PhySIC: a veto supertree method with desirable properties. Syst. Biol. 56, 798–817 (2007)

    Article  Google Scholar 

  22. Semple, C., Steel, M.: A supertree method for rooted trees. Discrete Appl. Math. 105, 147–158 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Thorley, J., Wilkinson, M., Charleston, M.: The information content of consensus trees. In: Rizzi, A., Vichi, M., Bock, H.H. (eds.) Advances in Data Science and Classification. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 91–98 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scornavacca, C., Berry, V., Ranwez, V. (2009). From Gene Trees to Species Trees through a Supertree Approach. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds) Language and Automata Theory and Applications. LATA 2009. Lecture Notes in Computer Science, vol 5457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00982-2_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00982-2_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00981-5

  • Online ISBN: 978-3-642-00982-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics