Nothing Special   »   [go: up one dir, main page]

Skip to main content

Biclustering Expression Data Based on Expanding Localized Substructures

  • Conference paper
Bioinformatics and Computational Biology (BICoB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5462))

Included in the following conference series:

Abstract

Biclustering gene expression data is the problem of extracting submatrices of genes and conditions exhibiting significant correlation across both the rows and the columns of a data matrix of expression values. We provide a method, LEB (Localize-and-Extract Biclusters) which reduces the search space into local neighborhoods within the matrix by first localizing correlated structures. The localization procedure takes its roots from effective use of graph-theoretical methods applied to problems exhibiting a similar structure to that of biclustering. Once interesting structures are localized the search space reduces to small neighborhoods and the biclusters are extracted from these localities. We evaluate the effectiveness of our method with extensive experiments both using artificial and real datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Leb, http://hacivat.khas.edu.tr/~cesim/lebsource.rar

  2. Abdullah, A., Hussain, A.: A new biclustering technique based on crossing minimization. Neurocomputing 69(16-18), 1882–1896 (2006)

    Article  Google Scholar 

  3. Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Simeone, B.: Consensus algorithms for the generation of all maximal bicliques. Discrete Appl. Math. 145(1), 11–21 (2004)

    Article  Google Scholar 

  4. Barkow, S., Bleuler, S., Prelic, A., Zimmermann, P., Zitzler, E.: Bicat: a biclustering analysis toolbox. Bioinformatics (Oxford, England) 22(10), 1282–1283 (2006)

    Article  CAS  Google Scholar 

  5. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: the order-preserving submatrix problem. In: RECOMB 2002: Proceedings of the sixth annual international conference on Computational biology, pp. 49–57. ACM, New York (2002)

    Chapter  Google Scholar 

  6. Ben-Hur, A., Noble, W.S.: Kernel methods for predicting protein–protein interactions. Bioinformatics 21(1), 38–46 (2005)

    Article  Google Scholar 

  7. Bergmann, S., Ihmels, J., Barkai, N.: Iterative signature algorithm for the analysis of large-scale gene expression data. Physical review. E, Statistical, nonlinear, and soft matter physics 67(3 Pt 1) (March 2003)

    Google Scholar 

  8. Berriz, G.F., King, O.D., Bryant, B., Sander, C., Roth, F.P.: Characterizing gene sets with funcassociate. Bioinformatics 19(18), 2502–2504 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Bryan, K., Cunningham, P.: Bottom-up biclustering of expression data. In: Proceedings of the 2006 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2006, vol. (4133177), pp. 232–239 (2006)

    Google Scholar 

  10. Çakiroglu, O.A., Erten, C., Karatas, Ö., Sözdinler, M.: Crossing minimization in weighted bipartite graphs. Journal of Discrete Algorithms (2008), doi:10.1016/j.jda.2008.08.003

    Google Scholar 

  11. Chen, K., Hu, Y.-J.: Bicluster analysis of genome-wide gene expression. In: 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, 2006. CIBCB 2006, pp. 1–7 (September 2006)

    Google Scholar 

  12. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Altman, R., Bailey, T.L., Bourne, P., Gribskov, M., Lengauer, T., Shindyalov, I.N. (eds.) Proceedings of the 8th International Conference on Intelligent Systems for Molecular (ISMB 2000), Menlo Park, CA, August 16–23, pp. 93–103. AAAI Press, Menlo Park (2000)

    Google Scholar 

  13. Getz, G., Levine, E., Domany, E.: Coupled two-way clustering analysis of gene microarray data. In: Proc. Natl. Acad. Sci. USA, pp. 12079–12084 (2000)

    Google Scholar 

  14. Hartigan, J.A.: Direct clustering of a data matrix. Journal of the American Statistical Association 67(337), 123–129 (1972)

    Article  Google Scholar 

  15. Mewes, H.W., Frishman, D., Güldener, U., Mannhaupt, G., Mayer, K., Mokrejs, M., Morgenstern, B., Münsterkötter, M., Rudd, S., Weil, B.: Mips: a database for genomes and protein sequences. Nucleic Acids Res. 30(1), 31–34 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kluger, Y., Basri, R., Chang, J.T., Gerstein, M.: Spectral biclustering of microarray data: coclustering genes and conditions. Journal Genome Res PMID 12671006 13, 703–716 (2003)

    Article  CAS  Google Scholar 

  17. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Trans. on Comp. Biol. and Bioinformatics (TCBB) 1(1), 24–45 (2004)

    Article  CAS  Google Scholar 

  18. Mehlhorn, K., Naher, S.: Leda: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  19. Murali, T.M., Kasif, S.: Extracting conserved gene expression motifs from gene expression data. In: Pacific Symposium on Biocomputing, pp. 77–88 (2003)

    Google Scholar 

  20. Peeters, R.: The maximum edge biclique problem is np-complete. Discrete Appl. Math. 131(3), 651–654 (2003)

    Article  Google Scholar 

  21. Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Buhlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22, 1122–1129 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. Sharan, R., Maron-katz, A., Shamir, R.: Click and expander: A system for clustering and visualizing gene expression data. Bioinformatics 19, 1787–1799 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(suppl. 1) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Erten, C., Sözdinler, M. (2009). Biclustering Expression Data Based on Expanding Localized Substructures. In: Rajasekaran, S. (eds) Bioinformatics and Computational Biology. BICoB 2009. Lecture Notes in Computer Science(), vol 5462. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00727-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00727-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00726-2

  • Online ISBN: 978-3-642-00727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics