Nothing Special   »   [go: up one dir, main page]

Skip to main content

An ICA-Based Method for Blind Source Separation in Sparse Domains

  • Conference paper
Independent Component Analysis and Signal Separation (ICA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5441))

Abstract

In this work, we propose and analyze a method to solve the problem of underdetermined blind source separation (and identification) that employs the ideas of sparse component analysis (SCA) and independent component analysis (ICA). The main rationale of the approach is to allow the possibility of reaching a method that is more robust with respect to the degree of sparseness of the involved signals and more effective in the use of information brought by multiple sensors. The ICA-based solution is tested with the aid of three representative scenarios and its performance is compared with that of one of the soundest SCA techniques available, the DEMIXN algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, New-York (2001)

    Book  Google Scholar 

  2. Gribonval, R., Lesage, S.: A survey of Sparse Component Analysis for Blind Source Separation: principles, perspectives, and new challenges. In: ESANN 2006 proceedings - European Symposium on Artificial Neural Networks Bruges, Belgium (2006)

    Google Scholar 

  3. Bofill, P., Zibulevsky, M.: Underdetermined blind source separation using sparse representations. Signal Processing 81, 2353–2363 (2001)

    Article  MATH  Google Scholar 

  4. Yilmaz, O., Rickard, S.: Blind Separation of Speech Mixtures via Time-Frequency Masking. IEEE Transactions on Signal Processing 52, 1830–1847 (2004)

    Article  MathSciNet  Google Scholar 

  5. Van Hulle, M.M.: Clustering Approach to Square and Non-Square Blind Source Separation. In: Proc. IEEE Neural Networks for Signal Processing IX, pp. 315–323 (1999)

    Google Scholar 

  6. Abrard, F., Deville, Y.: Blind separation of dependent sources using the time-frequency ratio of mixtures approach. In: Proc. ISSPA 2003, France (2003)

    Google Scholar 

  7. Arberet, S., Gribonval, R., Bimbot, F.: A Robust Method to Count and Locate Audio Sources in a Stereophonic Linear Instantaneous Mixture. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 536–543. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Noorshams, N., Babaie-Zadeh, M., Jutten, C.: Estimating the Mixing Matrix in Sparse Component Analysis Based on Converting a Multiple Dominant to a Single Dominant Problem. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 397–405. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Rioul, O., Vetterli, M.: Wavelets and Signal Processing. IEEE Signal Processing Magazine 8, 14–38 (1991)

    Article  Google Scholar 

  10. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons, New-York (2001)

    MATH  Google Scholar 

  11. Comon, P.: Independent component analysis, A new concept? Signal Processing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  12. Comon, P., Moreu, E.: Improved contrast dedicated to blind separation in communications. In: Proc. ICASSP, Munich, pp. 3453–3456, April 20-24(1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nadalin, E.Z., Suyama, R., Attux, R. (2009). An ICA-Based Method for Blind Source Separation in Sparse Domains. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds) Independent Component Analysis and Signal Separation. ICA 2009. Lecture Notes in Computer Science, vol 5441. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00599-2_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00599-2_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00598-5

  • Online ISBN: 978-3-642-00599-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics