Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modelling the Efficiencies and Interactions of Attentional Networks

  • Conference paper
Attention in Cognitive Systems (WAPCV 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5395))

Included in the following conference series:

  • 1014 Accesses

Abstract

Posner and colleagues [38,40] assert that attention comprises three distinct anatomical areas of the brain responsible for separate aspects of attention, namely alerting, orienting and executive control. Based on this view of attention, the work presented here computationally models the attentional networks task (ANT) which can be used to assess the efficiency and interactions of these disparate networks, collectively responsible for different functions related to attention mechanisms. The present research builds upon the model of ANT to show the modulation effects of one network on the other and suggests how the model can be used to simulate neglect conditions related to attention. The model is evaluated against data sets from experimental studies and the model’s fit to data is assessed statistically. Building such models of attention benefits computer vision research, as they are, well informed from both cognitive psychology and neuroscience perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. The ACT-R Website, http://act-r.psy.cmu.edu/actr6/

  2. Anderson, J.R.: Rules of the mind. Lawrence Erlbaum Associates, Hillsdale (1993)

    Google Scholar 

  3. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psych. Rev. 111(4), 1036–1060 (2004)

    Article  Google Scholar 

  4. Anderson, J.R., Lebeire, C.: The atomic components of thought. Lawrence Erlbaum, Mahwah (1998)

    Google Scholar 

  5. Anderson, J.R., Matessa, M., Douglass, S.: The ACT-R theory and visual attention. In: Proc. Seventeenth Ann. Conf. Cog. Sci. Soc., Nashville, Tennesse, pp. 61–65 (1995)

    Google Scholar 

  6. Booth, J., Carlson, C.L., Tucker, D.: Cognitive inattention in the ADHD subtypes. In: Proc. Tenth Mtg Int. Soc. Res. Child and Adolescent Psychopathology (ISRCAP), Vancouver (2001)

    Google Scholar 

  7. Broadbent, D.E.: Perception and Communication. Pergamon Press, London (1958)

    Book  Google Scholar 

  8. Bundesen, C.: A Theory of Visual Attention. Psych. Rev. 97, 523–547 (1990)

    Article  CAS  Google Scholar 

  9. Callejas, A., Lupianez, J., Tudela, P.: The three attentional networks: on their independence and interactions. Brain Cognition 54, 225–227 (2004)

    Article  PubMed  Google Scholar 

  10. Callejas, A., Lupianez, J., Funes, M.J., Tudela, P.: Modulations among the alerting, orienting and executive control networks. Exp. Brain Res. 167, 27–37 (2005)

    Article  PubMed  Google Scholar 

  11. Cohen, J., McClelland, J.L., Dunbar, K.: Automatic processes in the Stroop effect: A parallel distributed processing account. Bull. Pscyhonomic Soc. 25, 239 (1987)

    Google Scholar 

  12. Corbetta, M., Shulman, G.L.: Control of goal-oriented and stimulus-driven attention in the brain. Nature Reviews 3(3), 201–215 (2002)

    Article  CAS  PubMed  Google Scholar 

  13. Droll, J.A., Gigone, K., Hayhoe, M.M.: Learning where to direct gaze during change detection. J. Vision 7(14), 1–12 (2007)

    Article  Google Scholar 

  14. Eriksen, B.A., Eriksen, C.W.: Effects of noise letters upon the identification of a target letter in a non search task. Perception and Psychophysics 16, 143–149 (1974)

    Article  Google Scholar 

  15. Fan, J., McCandliss, B.D., Fossella, J., Flombaum, J.I., Posner, M.I.: The activation of attentional networks. Neuroimaging 26, 471–479 (2005)

    Article  Google Scholar 

  16. Fan, J., McCandliss, B.D., Sommer, T., Raz, M., Posner, M.I.: Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 3(14), 340–347 (2002)

    Article  Google Scholar 

  17. Fernandez-Duque, D., Black, S.E.: Attentional networks in normal aging and Alzheimer’s disease. Neuropsychology 20(2), 133–143 (2006)

    Article  PubMed  Google Scholar 

  18. Gooding, D., Braun, J., Studer, J.: Attentional network task performance in patients with schizophrenia–spectrum disorders: Evidence of a specific deficit. Schizophrenia Res. 88(1-3), 169–178 (2006)

    Article  Google Scholar 

  19. Gray, W.D., Young, R.M., Kirschenbaum, S.S.: Introduction to this special issue on cognitive architectures and human-computer interaction. Human-Computer Interaction 12, 301–309 (1997)

    Article  Google Scholar 

  20. Heinke, D., Humphreys, G.W.: Computational Models of Visual Selective Attention: A Review. In: Houghton, G. (ed.) Connectionist Models in Psych., pp. 273–312. Psychology Press (2005)

    Google Scholar 

  21. Hopfinger, J.B., Buonocore, M.H., Mangun, G.R.: The neural mechanisms of top-down attentional control. Nat. Neurosc. 3, 284–291 (2000)

    Article  CAS  Google Scholar 

  22. Howes, A., Young, R.M.: The role of cognitive architecture in modeling the user: Soar’s learning mechanism. Human-Computer Interaction 12(4), 311–343 (1997)

    Article  Google Scholar 

  23. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Patt. Anal. Mach. Intell. 20, 1254–1259 (1998)

    Article  Google Scholar 

  24. Itti, L., Koch, C.: Computational modeling of visual attention. Nature Reviews Neuroscience 2(3), 194–203 (2001)

    Article  CAS  PubMed  Google Scholar 

  25. Keiras, D.E., Meyer, D.E.: An overview of the EPIC architecture for cognition and performance with application to human-computer interaction. Human-computer Interaction 12, 391–438 (1997)

    Article  Google Scholar 

  26. Klein, M.R.: Chronometric explorations of disordered minds. Trends Cog. Sci. 7(5), 190–191 (2003)

    Article  Google Scholar 

  27. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4, 219–227 (1985)

    CAS  PubMed  Google Scholar 

  28. Labarge, D.: Attention, awareness, and the triangular circuit. Consc. and Cog. 6, 140–181 (1997)

    Google Scholar 

  29. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intelligence. Art. Intell. 33(3), 1–64 (1987)

    Article  Google Scholar 

  30. Lovett, M.C.: A Strategy-Based Interpretation of Stroop. Cog. Sci. 29(3), 493–524 (2005)

    Article  Google Scholar 

  31. McClelland, J., Rumelhart, D.: An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psych. Rev. 88, 375–407 (1981)

    Google Scholar 

  32. Navalpakkam, V., Arbib, M.A., Itti, L.: Attention and Scene Understanding. In: Itti, L., Rees, G., Tsotsos, J.K. (eds.) Neurobiology of Attention, pp. 197–203. Elsevier, San Diego (2005)

    Chapter  Google Scholar 

  33. Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge (1990)

    Google Scholar 

  34. O’Reilly, R.C., Munakata, Y.: Computational Explorations of Cognitive Neuroscience. MIT Press, Cambridge (2000)

    Google Scholar 

  35. Phaf, R.H., Van der Heidgen, A.H.C., Hudson, P.T.W.: SLAM: A connectionist model for attention in visual selection tasks. Cog. Psych. 22, 273–341 (1990)

    Article  CAS  Google Scholar 

  36. Posner, M.I.: Orienting of Attention. Quart. J. Exp. Psych. 32, 3–25 (1980)

    Article  CAS  Google Scholar 

  37. Posner, M.I.: Attention: the mechanism of consciousness. Proc. Nat. Acad. Sci. 91(16), 7398–7402 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Posner, M.I., Boies, S.J.: Components of attention. Psych. Rev. 78, 391–408 (1971)

    Article  Google Scholar 

  39. Posner, M.I., Fan, J.: Attention as an organ system. In: Pomerantz, J. (ed.) Neurobiology of Perception and Communication: From Synapse to Society. De Lange Conference IV. Camb. Univ. Press, London (2007)

    Google Scholar 

  40. Posner, M.I., Petersen, S.E.: The attention system of the human brain. Ann. Rev. Neurosc. 13, 25–42 (1990)

    Article  CAS  Google Scholar 

  41. Posner, M.I., Rothbart, M.K.: Research on attention networks as a model for the integration of psychological science. Ann. Rev. Psych. 58, 1–23 (2007)

    Article  Google Scholar 

  42. Posner, M.I., Rothbart, M.K., Vizueta, N., Levy, K.N., Evans, D.E., Thomas, K.M., Clarkin, J.F.: Attentional mechanisms of borderline personality disorder. Proc. Nat. Acad. Sci. 99(25), 16366–16370 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Posner, M.I., Sheese, B.E., Odludas, Y., Tang, Y.: Analyzing and shaping human attentional networks. Neur. Networks 19, 1422–1429 (2006)

    Article  Google Scholar 

  44. Raz, A.: Anatomy of Attentional Networks. Anatom. Rec., Part B, New Anatomist 281(1), 21–36 (2004)

    Article  Google Scholar 

  45. Rensink, R.A.: The dynamic representation of scenes. Visual Cognition 7, 17–42 (2000)

    Article  Google Scholar 

  46. The Sackler Institute for Developmental Psychobiology, http://www.sacklerinstitute.org/users/jin.fan/

  47. Schneider, W., Shiffrin, R.M.: Controlled and automatic human information processing: I. Detection, search and attention. Psych. Rev. 84, 1–66 (1977)

    Google Scholar 

  48. Torralba, A.: Modeling global scene factors in attention. J. Opt. Soc. Am., Special Issue on Bayesian and Statistical Approaches to Vision 20(7), 1407–1418 (2003)

    Google Scholar 

  49. Torralba, A., Oliva, A., Castelhano, M., Henderson, J.M.: Contextual Guidance of Attention in Natural scenes: The role of Global features on object search. Psych. Rev. 113(4), 766–786 (2006)

    Article  Google Scholar 

  50. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cog. Psych. 12, 97–136 (1980)

    Article  CAS  Google Scholar 

  51. Treisman, A.M., Sato, S.: Conjunction search revisited. J. Exp. Psych.: Hum. Percept. and Perf. 16, 459–478 (1990)

    CAS  Google Scholar 

  52. Tsotsos, J.K., Culhane, S., Wai, W., Lai, Y., Davis, N., Nuflo, F.: Modeling visual attention via selective tuning. Art. Intell. 78(1-2), 507–547 (1995)

    Article  Google Scholar 

  53. Wang, H., Fan, J., Johnson, T.R.: A symbolic model of human attentional networks. Cog. Sys. Res. 5, 119–134 (2004)

    Article  Google Scholar 

  54. Wang, H., Fan, J., Yang, Y.: Toward a Multilevel Analysis of Human Attentional Networks. In: Forbus, K., Genter, D., Regier, T. (eds.) Proc. 26th Ann. Conf. Cog. Sci. Soc., Chicago, Illinois, pp. 1428–1433 (2004)

    Google Scholar 

  55. Wang, K., Fan, J., Dong, Y., Wang, C., Lee, T.M.C., Posner, M.I.: Selective Impairment of attentional networks of orienting and executive control in Schizophrenia. Schizophrenia Res. 78, 235–241 (2005)

    Article  Google Scholar 

  56. Wang, H., Fan, J.: Human attentional networks: A connectionist model. J. Cog. Neurosc. 16(10), 1678–1689 (2007)

    Article  Google Scholar 

  57. Wolfe, J.M.: Guided Search 2.0: A revised model of visual search. Psychonomic Bull. and Rev. 1(2), 202–238 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hussain, F., Wood, S. (2009). Modelling the Efficiencies and Interactions of Attentional Networks. In: Paletta, L., Tsotsos, J.K. (eds) Attention in Cognitive Systems. WAPCV 2008. Lecture Notes in Computer Science(), vol 5395. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00582-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00582-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00581-7

  • Online ISBN: 978-3-642-00582-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics