Nothing Special   »   [go: up one dir, main page]

Skip to main content

Recognizing Facial Expressions Using Model-Based Image Interpretation

  • Conference paper
Multimodal Signals: Cognitive and Algorithmic Issues

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5398))

Abstract

Even if electronic devices widely occupy our daily lives, human-machine interaction still lacks intuition. Therefore, researchers intend to resolve these shortcomings by augmenting traditional systems with aspects of human-human interaction and consider human emotion, behavior, and intention.

This publication focusses on one aspect of this challenge: recognizing facial expressions. Our approach achieves real-time performance and provides robustness for real-world applicability. This computer vision task comprises of various phases for which it exploits model-based techniques that accurately localize facial features, seamlessly track them through image sequences, and finally infer facial expressions visible. We specifically adapt state-of-the-art techniques to each of these challenging phases. Our system has been successfully presented to industrial, political, and scientific audience in various events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chibelushi, C.C., Bourel, F.: Facial expression recognition: A brief tutorial overview. In: Fisher, R. (ed.) CVonline: On-Line Compendium of Computer Vision (January 2003)

    Google Scholar 

  2. Cohen, I., Sebe, N., Chen, L., Garg, A., Huang, T.: Facial expression recognition from video sequences: Temporal and static modeling. Computer Vision and Image Understanding (CVIU) special issue on face recognition 91(1-2), 160–187 (2003)

    Article  Google Scholar 

  3. Cohn, J., Zlochower, A., Lien, J.J.-J., Kanade, T.: Featurepoint tracking by optical flow discriminates subtle differences in facial expression. In: Proceedings of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition, April 1998, pp. 396–401 (1998)

    Google Scholar 

  4. Cohn, J., Zlochower, A., Lien, J.J.-J., Kanade, T.: Automated face analysis by feature point tracking has high concurrent validity with manual facs coding. Psychophysiology 36, 35–43 (1999)

    Article  Google Scholar 

  5. Cootes, T.F., Taylor, C.J.: Active shape models – smart snakes. In: Proceedings of the 3rd British Machine Vision Conference, pp. 266–275. Springer, Heidelberg (1992)

    Google Scholar 

  6. Edwards, G.J., Cootes, T.F., Taylor, C.J.: Face recognition using active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 581–595. Springer, Heidelberg (1998)

    Google Scholar 

  7. Ekman, P.: Universals and cultural differences in facial expressions of emotion. In: Cole, J. (ed.) Nebraska Symposium on Motivation 1971, Lincoln, NE, vol. 19, pp. 207–283. University of Nebraska Press (1972)

    Google Scholar 

  8. Ekman, P.: Facial expressions. In: Dalgleish, T., Power, M. (eds.) Handbook of Cognition and Emotion, John Wiley & Sons Ltd, New York (1999)

    Google Scholar 

  9. Ekman, P., Friesen, W.: The Facial Action Coding System: A Technique for The Measurement of Facial Movement. Consulting Psychologists Press, San Francisco (1978)

    Google Scholar 

  10. Essa, I.A., Pentland, A.P.: Coding, analysis, interpretation, and recognition of facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 757–763 (1997)

    Article  Google Scholar 

  11. Fischer, S., Döring, S., Wimmer, M., Krummheuer, A.: Experiences with an emotional sales agent. In: André, E., Dybkjær, L., Minker, W., Heisterkamp, P. (eds.) ADS 2004. LNCS, vol. 3068, pp. 309–312. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Friesen, W.V., Ekman, P.: Emotional Facial Action Coding System. University of California at San Francisco (1983); unpublished manuscript

    Google Scholar 

  13. Hanek, R.: Fitting Parametric Curve Models to Images Using Local Selfadapting Seperation Criteria. PhD thesis, Department of Informatics, Technische Universität München (2004)

    Google Scholar 

  14. Ikehara, C.S., Chin, D.N., Crosby, M.E.: A model for integrating an adaptive information filter utilizing biosensor data to assess cognitive load. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702, pp. 208–212. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Kanade, T., Cohn, J.F., Tian, Y.: Comprehensive database for facial expression analysis. In: International Conference on Automatic Face and Gesture Recognition, France, pp. 46–53 (March 2000)

    Google Scholar 

  16. Lisetti, C.L., Schiano, D.J.: Automatic facial expression interpretation: Where human interaction, articial intelligence and cognitive science intersect. Pragmatics and Cognition, Special Issue on Facial Information Processing and Multidisciplinary Perspective (1999)

    Google Scholar 

  17. Littlewort, G., Fasel, I., Bartlett, M.S., Movellan, J.R.: Fully automatic coding of basic expressions from video. Technical report, University of California, San Diego, INC MPLab (March 2002)

    Google Scholar 

  18. Michel, P., El Kaliouby, R.: Real time facial expression recognition in video using support vector machines. In: Fifth International Conference on Multimodal Interfaces, Vancouver, pp. 258–264 (2003)

    Google Scholar 

  19. Pantic, M., Rothkrantz, L.J.M.: Automatic analysis of facial expressions: The state of the art. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1424–1445 (2000)

    Article  Google Scholar 

  20. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  21. Schuller, B., Wimmer, M., Arsic, D., Rigoll, G., Radig, B.: Audiovisual behavior modeling by combined feature spaces. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, Hawaii, USA, April 2007, vol. 2, pp. 733–736 (2007)

    Google Scholar 

  22. Schweiger, R., Bayerl, P., Neumann, H.: Neural architecture for temporal emotion classification. In: André, E., Dybkjær, L., Minker, W., Heisterkamp, P. (eds.) ADS 2004. LNCS (LNAI), vol. 3068, pp. 49–52. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Sebe, N., Lew, M.S., Cohen, I., Garg, A., Huang, T.S.: Emotion recognition using a cauchy naive bayes classifier. In: Proceedings of the 16th International Conference on Pattern Recognition, vol. 1, pp. 17–20. IEEE Computer Society, Washington (2002)

    Google Scholar 

  24. Sheldon, E.M.: Virtual agent interactions. PhD thesis, Elizabeth Sheldon, Major Professor-Linda Malone (2001)

    Google Scholar 

  25. Tian, Y.-L., Kanade, T., Cohn, J.F.: Recognizing action units for facial expression analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(2), 97–115 (2001)

    Article  Google Scholar 

  26. Vick, R.M., Ikehara, C.S.: Methodological issues of real time data acquisition from multiple sources of physiological data. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences, p. 129. IEEE Computer Society, Washington (2003)

    Google Scholar 

  27. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, Kauai, Hawaii, vol. 1, pp. 511–518 (2001)

    Google Scholar 

  28. Wimmer, M.: Model-based Image Interpretation with Application to Facial Expression Recognition. PhD thesis, Technische Universitat München, Institute for Informatics (December 2007)

    Google Scholar 

  29. Wimmer, M., Stulp, F., Pietzsch, S., Radig, B.: Learning local objective functions for robust face model fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 30(8), 1357–1370 (2008)

    Article  Google Scholar 

  30. Wimmer, M., Stulp, F., Tschechne, S., Radig, B.: Learning robust objective functions for model fitting in image understanding applications. In: Chantler, M.J., Trucco, E., Fisher, R.B. (eds.) Proceedings of the 17th British Machine Vision Conference (BMVC), vol. 3, pp. 1159–1168. BMVA, Edinburgh (September 2006) (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wimmer, M., Mayer, C., Radig, B. (2009). Recognizing Facial Expressions Using Model-Based Image Interpretation. In: Esposito, A., Hussain, A., Marinaro, M., Martone, R. (eds) Multimodal Signals: Cognitive and Algorithmic Issues. Lecture Notes in Computer Science(), vol 5398. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00525-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00525-1_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00524-4

  • Online ISBN: 978-3-642-00525-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics