Abstract
Even if electronic devices widely occupy our daily lives, human-machine interaction still lacks intuition. Therefore, researchers intend to resolve these shortcomings by augmenting traditional systems with aspects of human-human interaction and consider human emotion, behavior, and intention.
This publication focusses on one aspect of this challenge: recognizing facial expressions. Our approach achieves real-time performance and provides robustness for real-world applicability. This computer vision task comprises of various phases for which it exploits model-based techniques that accurately localize facial features, seamlessly track them through image sequences, and finally infer facial expressions visible. We specifically adapt state-of-the-art techniques to each of these challenging phases. Our system has been successfully presented to industrial, political, and scientific audience in various events.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chibelushi, C.C., Bourel, F.: Facial expression recognition: A brief tutorial overview. In: Fisher, R. (ed.) CVonline: On-Line Compendium of Computer Vision (January 2003)
Cohen, I., Sebe, N., Chen, L., Garg, A., Huang, T.: Facial expression recognition from video sequences: Temporal and static modeling. Computer Vision and Image Understanding (CVIU) special issue on face recognition 91(1-2), 160–187 (2003)
Cohn, J., Zlochower, A., Lien, J.J.-J., Kanade, T.: Featurepoint tracking by optical flow discriminates subtle differences in facial expression. In: Proceedings of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition, April 1998, pp. 396–401 (1998)
Cohn, J., Zlochower, A., Lien, J.J.-J., Kanade, T.: Automated face analysis by feature point tracking has high concurrent validity with manual facs coding. Psychophysiology 36, 35–43 (1999)
Cootes, T.F., Taylor, C.J.: Active shape models – smart snakes. In: Proceedings of the 3rd British Machine Vision Conference, pp. 266–275. Springer, Heidelberg (1992)
Edwards, G.J., Cootes, T.F., Taylor, C.J.: Face recognition using active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 581–595. Springer, Heidelberg (1998)
Ekman, P.: Universals and cultural differences in facial expressions of emotion. In: Cole, J. (ed.) Nebraska Symposium on Motivation 1971, Lincoln, NE, vol. 19, pp. 207–283. University of Nebraska Press (1972)
Ekman, P.: Facial expressions. In: Dalgleish, T., Power, M. (eds.) Handbook of Cognition and Emotion, John Wiley & Sons Ltd, New York (1999)
Ekman, P., Friesen, W.: The Facial Action Coding System: A Technique for The Measurement of Facial Movement. Consulting Psychologists Press, San Francisco (1978)
Essa, I.A., Pentland, A.P.: Coding, analysis, interpretation, and recognition of facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 757–763 (1997)
Fischer, S., Döring, S., Wimmer, M., Krummheuer, A.: Experiences with an emotional sales agent. In: André, E., Dybkjær, L., Minker, W., Heisterkamp, P. (eds.) ADS 2004. LNCS, vol. 3068, pp. 309–312. Springer, Heidelberg (2004)
Friesen, W.V., Ekman, P.: Emotional Facial Action Coding System. University of California at San Francisco (1983); unpublished manuscript
Hanek, R.: Fitting Parametric Curve Models to Images Using Local Selfadapting Seperation Criteria. PhD thesis, Department of Informatics, Technische Universität München (2004)
Ikehara, C.S., Chin, D.N., Crosby, M.E.: A model for integrating an adaptive information filter utilizing biosensor data to assess cognitive load. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702, pp. 208–212. Springer, Heidelberg (2003)
Kanade, T., Cohn, J.F., Tian, Y.: Comprehensive database for facial expression analysis. In: International Conference on Automatic Face and Gesture Recognition, France, pp. 46–53 (March 2000)
Lisetti, C.L., Schiano, D.J.: Automatic facial expression interpretation: Where human interaction, articial intelligence and cognitive science intersect. Pragmatics and Cognition, Special Issue on Facial Information Processing and Multidisciplinary Perspective (1999)
Littlewort, G., Fasel, I., Bartlett, M.S., Movellan, J.R.: Fully automatic coding of basic expressions from video. Technical report, University of California, San Diego, INC MPLab (March 2002)
Michel, P., El Kaliouby, R.: Real time facial expression recognition in video using support vector machines. In: Fifth International Conference on Multimodal Interfaces, Vancouver, pp. 258–264 (2003)
Pantic, M., Rothkrantz, L.J.M.: Automatic analysis of facial expressions: The state of the art. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1424–1445 (2000)
Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)
Schuller, B., Wimmer, M., Arsic, D., Rigoll, G., Radig, B.: Audiovisual behavior modeling by combined feature spaces. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, Hawaii, USA, April 2007, vol. 2, pp. 733–736 (2007)
Schweiger, R., Bayerl, P., Neumann, H.: Neural architecture for temporal emotion classification. In: André, E., Dybkjær, L., Minker, W., Heisterkamp, P. (eds.) ADS 2004. LNCS (LNAI), vol. 3068, pp. 49–52. Springer, Heidelberg (2004)
Sebe, N., Lew, M.S., Cohen, I., Garg, A., Huang, T.S.: Emotion recognition using a cauchy naive bayes classifier. In: Proceedings of the 16th International Conference on Pattern Recognition, vol. 1, pp. 17–20. IEEE Computer Society, Washington (2002)
Sheldon, E.M.: Virtual agent interactions. PhD thesis, Elizabeth Sheldon, Major Professor-Linda Malone (2001)
Tian, Y.-L., Kanade, T., Cohn, J.F.: Recognizing action units for facial expression analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(2), 97–115 (2001)
Vick, R.M., Ikehara, C.S.: Methodological issues of real time data acquisition from multiple sources of physiological data. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences, p. 129. IEEE Computer Society, Washington (2003)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, Kauai, Hawaii, vol. 1, pp. 511–518 (2001)
Wimmer, M.: Model-based Image Interpretation with Application to Facial Expression Recognition. PhD thesis, Technische Universitat München, Institute for Informatics (December 2007)
Wimmer, M., Stulp, F., Pietzsch, S., Radig, B.: Learning local objective functions for robust face model fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 30(8), 1357–1370 (2008)
Wimmer, M., Stulp, F., Tschechne, S., Radig, B.: Learning robust objective functions for model fitting in image understanding applications. In: Chantler, M.J., Trucco, E., Fisher, R.B. (eds.) Proceedings of the 17th British Machine Vision Conference (BMVC), vol. 3, pp. 1159–1168. BMVA, Edinburgh (September 2006) (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wimmer, M., Mayer, C., Radig, B. (2009). Recognizing Facial Expressions Using Model-Based Image Interpretation. In: Esposito, A., Hussain, A., Marinaro, M., Martone, R. (eds) Multimodal Signals: Cognitive and Algorithmic Issues. Lecture Notes in Computer Science(), vol 5398. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00525-1_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-00525-1_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00524-4
Online ISBN: 978-3-642-00525-1
eBook Packages: Computer ScienceComputer Science (R0)