Abstract
A binary tanglegram is a pair 〈S,T〉 of binary trees whose leaf sets are in one-to-one correspondence; matching leaves are connected by inter-tree edges. For applications, for example in phylogenetics, it is essential that both trees are drawn without edge crossings and that the inter-tree edges have as few crossings as possible. It is known that finding a drawing with the minimum number of crossings is NP-hard and that the problem is fixed-parameter tractable with respect to that number.
We prove that under the Unique Games Conjecture there is no constant-factor approximation for general binary trees. We show that the problem is hard even if both trees are complete binary trees. For this case we give an O(n 3)-time 2-approximation and a new and simple fixed-parameter algorithm. We show that the maximization version of the dual problem for general binary trees can be reduced to a version of MaxCut for which the algorithm of Goemans and Williamson yields a 0.878-approximation.
This work was started at the 10th Korean Workshop on Computational Geometry, organized by H. Haverkort and Ch. Knauer in Schloss Dagstuhl, Germany, July 2007.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)
Buchin, K., Buchin, M., Byrka, J., Nöllenburg, M., Okamoto, Y., Silveira, R.I., Wolff, A.: Drawing (complete) binary tanglegrams: Hardness, approximation, fixed-parameter tractability (2008), http://arxiv.org/abs/0806.0920 Arxiv report
DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On distances between phylogenetic trees. In: Proc. 18th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA 1997), pp. 427–436 (1997)
Dujmović, V., Fernau, H., Kaufmann, M.: Fixed Parameter Algorithms for one-sided crossing minimization Revisited. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 332–344. Springer, Heidelberg (2004)
Dwyer, T., Schreiber, F.: Optimal leaf ordering for two and a half dimensional phylogenetic tree visualization. In: Proc. Australasian Sympos. Inform. Visual (InVis.au 2004). CRPIT, vol. 35, pp. 109–115. Australian Comput. Soc. (2004)
Eades, P., Wormald, N.: Edge crossings in drawings of bipartite graphs. Algorithmica 10, 379–403 (1994)
Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via crossing minimization. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 457–469. Springer, Heidelberg (2005)
Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)
Hafner, M.S., Sudman, P.D., Villablanca, F.X., Spradling, T.A., Demastes, J.W., Nadler, S.A.: Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 265, 1087–1090 (1994)
Holten, D., van Wijk, J.J.: Visual comparison of hierarchically organized data. In: Proc. 10th Eurographics/IEEE-VGTC Sympos. Visualization (EuroVis 2008), pp. 759–766 (2008)
Khot, S.: On the power of unique 2-prover 1-round games. In: Proc. 34th Annu. ACM Sympos. Theory Comput (STOC 2002), pp. 767–775 (2002)
Khot, S., Vishnoi, N.K.: The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l 1. In: Proc. 46th Annu. IEEE Sympos. Foundat. Comput. Sci. (FOCS 2005), pp. 53–62 (2005)
Lozano, A., Pinter, R.Y., Rokhlenko, O., Valiente, G., Ziv-Ukelson, M.: Seeded tree alignment and planar tanglegram layout. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 98–110. Springer, Heidelberg (2007)
Nagamochi, H.: An improved bound on the one-sided minimum crossing number in two-layered drawings. Discrete Comput. Geom. 33(4), 565–591 (2005)
Nöllenburg, M., Holten, D., Völker, M., Wolff, A.: Drawing binary tanglegrams: An experimental evaluation. Arxiv report (2008), http://arxiv.org/abs/0806.0928
Page, R.D.M. (ed.): Tangled Trees: Phylogeny, Cospeciation, and Coevolution. University of Chicago Press (2002)
Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics 11(2), 109–125 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Buchin, K. et al. (2009). Drawing (Complete) Binary Tanglegrams. In: Tollis, I.G., Patrignani, M. (eds) Graph Drawing. GD 2008. Lecture Notes in Computer Science, vol 5417. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00219-9_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-00219-9_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00218-2
Online ISBN: 978-3-642-00219-9
eBook Packages: Computer ScienceComputer Science (R0)