Abstract
We propose failure information analysis as a novel strategy for uncovering malware activity and other anomalies in enterprise network traffic. A focus of our study is detecting self-propagating malware such as worms and botnets. We begin by conducting an empirical study of transport- and application-layer failure activity using a collection of long-lived malware traces. We dissect the failure activity observed in this traffic in several dimensions, finding that their failure patterns differ significantly from those of real-world applications. Based on these observations, we describe the design of a prototype system called Netfuse to automatically detect and isolate malware-like failure patterns. The system uses an SVM-based classification engine to identify suspicious systems and clustering to aggregate failure activity of related enterprise hosts. Our evaluation using several malware traces demonstrates that the Netfuse system provides an effective means to discover suspicious application failures and infected enterprise hosts. We believe it would be a useful complement to existing defenses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Data clustering, http://www.let.rug.nl/~kleiweg/clustering/
Gnu wget, http://www.gnu.org/software/wget/
Kademlia, http://en.wikipedia.org/wiki/Kademlia
L7-filter: Application Layer Packet Classifier for Linux, http://l7-filter.sourceforge.net/
Offensive Computing, Community Malicious code research and analysis, http://www.offensivecomputing.net/
Simple Exponential Smoothing, http://en.wikipedia.org/wiki/Exponential_smoothing
Wireshark: The World’s Most Popular Network Protocol Analyzer, http://www.wireshark.org/
WEKA-Machine Learning Software in Java (2008), http://weka.wiki.sourceforge.net/Primer-?token=2b7a093d07966047b281eeec0da1b9fd
Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated classification and analysis of internet malware. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg (2007)
Bayer, U., Comparetti, P.M., Hlauscheck, C., Kruegel, C., Kirda, E.: Scalable, behavior-based malware clustering. In: Network and Distributed System Security Symposium, NDSS (2009)
Dagon, D., Zou, C., Lee, W.: Modeling botnet propagation using time zones. In: Network and Distributed System Security Symposium, NDSS (2006)
Moore, D., Shannon, C., Brown, J.: Code-Red: A case study on the spread and victims of an Internet worm. In: Proceedings of the Internet Measurement Workshop (2002)
Debar, H.: An Introduction to Intrusion Detection Systems. In: Proceedings of Connect (2000)
Estan, C., Savage, S., Varghese, G.: Automatically Inferring Patterns of Resource Consumption in Network Traffic. In: Proceedings of ACM SIGCOMM (2003)
F-Secure. Kapersky Security Bulletin 2008: Malware Evolution January - June 2008 (2008), http://www.viruslist.com/analysis?pubid=204792034
F-Secure. Calculating the Size of the Downadup Outbreak (2009), http://www.f-secure.com/weblog/archives/00001584.html
Fitzgerald, P.: Downadup: Geolocation, Fingerprinting and Piracy (2009), https://forums.symantec.com/t5/Malicious-Code/Downadup-Geo-location-Fingerprinting-and-Piracy/ba-p/380993
Gianvecchio, S., Xie, M., Wu, Z., Wang, H.: Measurement and classification of humans and bots in internet. In: USENIX Security (2008)
Goebel, J., Holz, T.: Rishi: Identify bot contaminated hosts by irc nickname evaluation. In: Hot Topics in Understanding Botnets (HotBots) (2007)
Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B.: Peer-to-peer botnets: Overview and case study. In: Hot Topics in Understanding Botnets (HotBots) (2007)
Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: Clustering analysis of network traffic for protocol- and structure-independent botnet detection. In: Proceedings of the 17th USENIX Security Symposium (2008)
Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting malware infection through IDS-driven dialog correlation. In: Proceedings of 16th USENIX Security Symposium (2007)
Gu, G., Zhang, J., Lee, W.: Botsniffer: Detecting botnet command and control channels in network traffic. In: Proceedings of the 15th Annual Network and Distributed System Security Symposium, NDSS 2008 (2008)
Holz, T., Gorecki, C., Rieck, K., Freiling, F.C.: Measuring and detecting fast-flux service networks. In: NDSS (2008)
SRI International. Malware Threat Center (2008), http://mtc.sri.org
Javitz, H., Valdes, A.: The SRI IDES statistical anomaly detector. In: Proceedings of IEEE Symposium on Research in Security and Privacy (1991)
Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast portscan detection using sequential hypothesis testing. In: Proceedings of the IEEE Symposium on Security and Privacy (2004)
Kandula, S., Chandra, R., Katabi, D.: What’s going on? Learning communication rules in edge networks. In: Sigcomm (2008)
Livadas, C., Walsh, R., Lapsley, D., Strayer, W.T.: Using machine learning techniques to identify botnet traffic. In: Proc. IEEE LCN Workshop on Network Security, WoNS 2006 (2006)
Trend Micro. Trend Micro Threat Roundup and Forecast - 1H 2008 (2008), http://us.trendmicro.com/us/threats/enterprise/security-library/threat-reports/index.html
Microsoft. Microsoft Security Bulletin MS08-067 – Critical (2008), http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx
Moore, D., Voelker, G.M., Savage, S.: Inferring internet denial-of-service activity. In: Proceedings of the 10th Usenix Security Symposium (2001)
Pang, R., Allman, M., Bennett, M., Lee, J., Paxson, V., Tierney, B.: A first look at modern enterprise traffic. In: IMC (2005)
Pang, R., Yegneswaran, V., Barford, P., Paxson, V., Peterson, L.: Characteristics of Internet background radiation. In: Proceedings of the 4th ACM SIGCOMM Internet Measurement Conference (2004)
Paxson, V.: Bro: A system for detecting network intruders in real-time. In: Proceedings of the 7th USENIX Security Symposium, San Antonio, TX (January 1998)
Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20 (1987)
Plonka, D., Barford, P.: Context-aware clustering of dns query traffic. In: Proceedings of ACM Internet Measurement Conference (2008)
Plonka, D., Barford, P.: Context-aware Clustering of DNS Query Traffic. In: Proceedings of the 8th ACM SIGCOMM Internet Measurement Conference (2008)
Rajab, M.A., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to understanding the botnet phenomenon. In: Proceedings of the 6th ACM SIGCOMM Internet Measurement Conference (2006)
Roesch, M.: The SNORT Network Intrusion Detection System (2002), http://www.snort.org
Vogt, R., Aycock, J., Jacobson Jr., M.J.: Army of botnets. In: Network and Distributed System Security Symposium, NDSS (2008)
Yegneswaran, V., Porras, P., Saidi, H., Sharif, M., Narayanan, A.: SRI’s Multiperspective Malware Infection Analysis Page (2009), http://www.cyber-ta.org/releases/malware-analysis/public/
Zdrnja, B., Brownlee, N., Wessels, D.: Passive Monitoring of DNS Anomalies (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Zhu, Z., Yegneswaran, V., Chen, Y. (2009). Using Failure Information Analysis to Detect Enterprise Zombies. In: Chen, Y., Dimitriou, T.D., Zhou, J. (eds) Security and Privacy in Communication Networks. SecureComm 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05284-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-05284-2_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05283-5
Online ISBN: 978-3-642-05284-2
eBook Packages: Computer ScienceComputer Science (R0)