Nothing Special   »   [go: up one dir, main page]

Skip to main content

Object Recognition Based on Efficient Sub-window Search

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5855))

Abstract

We propose a new method for object recognition in natural images. This method integrates bag of features model with efficient sub-window search technology. sPACT is introduces as local feature descriptor for recognition task. It can capture both local structures and global structures of an image patch efficiently by histogram of Census Transform. An efficient sub-window search method is adapted to perform localization. This method relies on a branch-and-bound scheme to find the global optimum of the quality function over all possible sub-windows. It requires much fewer classifier evaluations than the usually way does. The evaluation on PASCAL 2007 VOC dataset shows that this object recognition method has many advantages. It uses weakly supervised training method, yet has comparable localization performance to state-of-the-art algorithms. The feature descriptor can efficiently encode image patches, and localization method is fast without losing precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fergus, R., Perona, P., Zisserman, A.: A visual category filter for google images. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 242–256. Springer, Heidelberg (2004)

    Google Scholar 

  2. Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: 8th European Conference on Computer Vision, pp. 17–32. Springer, Heidelberg (2004)

    Google Scholar 

  3. Crandall, D., Felzenszwalb, P., Huttenlocher, D.: Spatial priors for part-based recognition using statistical models. In: IEEE Computer Vision and Pattern Recognition 2005, pp. 10–17. IEEE Press, San Diego (2005)

    Google Scholar 

  4. Leordeanu, M., Heber, M., Sukthankar, R.: Beyond Local Appearance: Category Recognition from Pairwise Interactions of Simple Features. In: IEEE Computer Vision and Pattern Recognition 2007, pp. 1–8. IEEE Press, Minnesota (2007)

    Chapter  Google Scholar 

  5. Shotton, J., Blake, A., Cipolla, R.: Contour-Based Learning for Object Detection. In: 10th International Conference on Computer Vision, pp. 503–510. IEEE Press, Beijing (2005)

    Google Scholar 

  6. Opelt, A., Pinz, A., Zisserman, A.: A Boundary-Fragment-Model for Object Detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 575–588. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: IEEE Computer Vision and Pattern Recognition 2005, pp. 886–893. IEEE Press, San Diego (2005)

    Google Scholar 

  8. Lampert, C.H., Blaschko, M.B., Hofmann, T.: Beyond Sliding Windows: Object Localization by Efficient Subwindow Search. In: IEEE Computer Vision and Pattern Recognition 2008, pp. 1–8. IEEE Press, Anchorage (2008)

    Google Scholar 

  9. Deng, H.L., Zhang, W., Mortensen, E.: Principal Curvature-Based Region Detector for Object Recognition. In: IEEE Computer Vision and Pattern Recognition 2007, pp. 1–8. IEEE Press, Minnesota (2007)

    Chapter  Google Scholar 

  10. Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of Adjacent Contour Segments for Object Detection. IEEE Trans. Pattern Anal. Machine Intell. 30, 36–51 (2008)

    Article  Google Scholar 

  11. Wu, J., James, M.R.: Where am I: Place instance and category recognition using spatial PACT. In: IEEE Computer Vision and Pattern Recognition 2008, pp. 1–8. IEEE Press, Anchorage (2008)

    Chapter  Google Scholar 

  12. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learning Journal 63, 3–42 (2006)

    Article  MATH  Google Scholar 

  13. Moosmann, F., Triggs, B., Jurie, F.: Fast Discriminative Visual Codebooks using Randomized Clustering Forests. In: Advances in Neural Information Processing Systems, vol. 19, pp. 985–992 (2006)

    Google Scholar 

  14. LIBSVM: a library for support vector machines, http://www.csie.ntu.edu.tw/cjlin/libsvm

  15. PASCAL 2007 VOC dataset, The PASCAL Visual Object Classes Challenge (2007), http://www.pascal-network.org/challenges/VOC/voc2007/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nie, Q., Zhan, S., Li, W. (2009). Object Recognition Based on Efficient Sub-window Search. In: Deng, H., Wang, L., Wang, F.L., Lei, J. (eds) Artificial Intelligence and Computational Intelligence. AICI 2009. Lecture Notes in Computer Science(), vol 5855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05253-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05253-8_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05252-1

  • Online ISBN: 978-3-642-05253-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics