Abstract
The paper proposes a new algorithm for supervised dimensionality reduction, called Laplacian Discriminant Projection based on Affinity Propagation (APLDP). APLDP defines three scatter matrices using similarities based on representative exemplars which are found by Affinity Propagation Clustering. After linear transformation, the considered pairwise samples within the same exemplar subset and the same class are as close as possible, while those exemplars between classes are as far as possible. The experiments on several data sets demonstrate the competence of APLDP.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph Embedding and Extension: A General Framework for Dimensionality Reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1), 40–51 (2007)
Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)
He, X., Yan, S., Hu, Y.X., Niyogi, P., Zhang, H.: Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3), 328–340 (2005)
Belkin, M., Niyogi, P.: Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Computation 15, 1373–1396 (2003)
Zhao, D., Lin, Z., Xiao, R., Tang, X.: Linear Laplacian Discrimination for Feature Extraction. In: CVPR (2007)
Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, Boston (1990)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)
Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin nearest neighbor classification. In: NIPS, pp. 1475–1482 (2006)
Nie, F., Xiang, S., Zhang, C.: Neighborhood MinMax Projections. In: IJCAI, pp. 993–998 (2007)
Howland, P., Park, H.: Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(8), 995–1006 (2004)
Liu, C.: Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(5), 725–737 (2007)
Martinez, A., Zhu, M.: Where are linear feature extraction methods applicable. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(12), 1934–1944 (2006)
Sim, T., Baker, S., Bsat, M.: The CMU Pose, illumination, and expression (PIE) database. In: IEEE International Conference of Automatic Face and Gesture Recognition (2002)
Wang, X., Tang, X.: Dual-space linear discriminant analysis for face recognition. In: CVPR, pp. 564–569 (2004)
Yan, S., Xu, D., Zhang, B., Zhang, H.: Graph embedding: A general framework for dimensionality reduction. In: CVPR (2005)
Yang, J., Frangi, A., Yang, J., Zhang, D., Jin, Z.: KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(2), 230–244 (2005)
Zheng, Z.L., Yang, J., Zhu, Y.: Face detection and recognition using colour sequential images. Journal of Research and Practice in Information Technology 38(2), 135–149 (2006)
Zheng, Z.L., Yang, J.: Supervised Locality Pursuit Embedding for Pattern Classification. Image and Vision Computing 24, 819–826 (2006)
Wang, X., Tang, X.: A unified framework for subspace face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1222–1228 (2004)
Wang, X., Tang, X.: Random sampling for subspace face recognition. International Journal of Computer Vision 70(1), 91–104 (2006)
Frey, B.J., Dueck, D.: Clustering by Passing Messages Between Data Points. Science 315, 972–994 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chang, X., Zheng, Z. (2009). Laplacian Discriminant Projection Based on Affinity Propagation. In: Deng, H., Wang, L., Wang, F.L., Lei, J. (eds) Artificial Intelligence and Computational Intelligence. AICI 2009. Lecture Notes in Computer Science(), vol 5855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05253-8_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-05253-8_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05252-1
Online ISBN: 978-3-642-05253-8
eBook Packages: Computer ScienceComputer Science (R0)