Nothing Special   »   [go: up one dir, main page]

Skip to main content

Laplacian Discriminant Projection Based on Affinity Propagation

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5855))

  • 2013 Accesses

Abstract

The paper proposes a new algorithm for supervised dimensionality reduction, called Laplacian Discriminant Projection based on Affinity Propagation (APLDP). APLDP defines three scatter matrices using similarities based on representative exemplars which are found by Affinity Propagation Clustering. After linear transformation, the considered pairwise samples within the same exemplar subset and the same class are as close as possible, while those exemplars between classes are as far as possible. The experiments on several data sets demonstrate the competence of APLDP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph Embedding and Extension: A General Framework for Dimensionality Reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1), 40–51 (2007)

    Article  Google Scholar 

  2. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  3. He, X., Yan, S., Hu, Y.X., Niyogi, P., Zhang, H.: Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3), 328–340 (2005)

    Article  Google Scholar 

  4. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Computation 15, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  5. Zhao, D., Lin, Z., Xiao, R., Tang, X.: Linear Laplacian Discrimination for Feature Extraction. In: CVPR (2007)

    Google Scholar 

  6. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, Boston (1990)

    MATH  Google Scholar 

  7. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

  8. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin nearest neighbor classification. In: NIPS, pp. 1475–1482 (2006)

    Google Scholar 

  9. Nie, F., Xiang, S., Zhang, C.: Neighborhood MinMax Projections. In: IJCAI, pp. 993–998 (2007)

    Google Scholar 

  10. Howland, P., Park, H.: Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(8), 995–1006 (2004)

    Article  Google Scholar 

  11. Liu, C.: Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(5), 725–737 (2007)

    Google Scholar 

  12. Martinez, A., Zhu, M.: Where are linear feature extraction methods applicable. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(12), 1934–1944 (2006)

    Article  Google Scholar 

  13. Sim, T., Baker, S., Bsat, M.: The CMU Pose, illumination, and expression (PIE) database. In: IEEE International Conference of Automatic Face and Gesture Recognition (2002)

    Google Scholar 

  14. Wang, X., Tang, X.: Dual-space linear discriminant analysis for face recognition. In: CVPR, pp. 564–569 (2004)

    Google Scholar 

  15. Yan, S., Xu, D., Zhang, B., Zhang, H.: Graph embedding: A general framework for dimensionality reduction. In: CVPR (2005)

    Google Scholar 

  16. Yang, J., Frangi, A., Yang, J., Zhang, D., Jin, Z.: KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(2), 230–244 (2005)

    Article  Google Scholar 

  17. Zheng, Z.L., Yang, J., Zhu, Y.: Face detection and recognition using colour sequential images. Journal of Research and Practice in Information Technology 38(2), 135–149 (2006)

    Google Scholar 

  18. Zheng, Z.L., Yang, J.: Supervised Locality Pursuit Embedding for Pattern Classification. Image and Vision Computing 24, 819–826 (2006)

    Article  Google Scholar 

  19. Wang, X., Tang, X.: A unified framework for subspace face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1222–1228 (2004)

    Article  MathSciNet  Google Scholar 

  20. Wang, X., Tang, X.: Random sampling for subspace face recognition. International Journal of Computer Vision 70(1), 91–104 (2006)

    Article  Google Scholar 

  21. Frey, B.J., Dueck, D.: Clustering by Passing Messages Between Data Points. Science 315, 972–994 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chang, X., Zheng, Z. (2009). Laplacian Discriminant Projection Based on Affinity Propagation. In: Deng, H., Wang, L., Wang, F.L., Lei, J. (eds) Artificial Intelligence and Computational Intelligence. AICI 2009. Lecture Notes in Computer Science(), vol 5855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05253-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05253-8_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05252-1

  • Online ISBN: 978-3-642-05253-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics