Abstract
An important issue with Evolutionary Algorithms (EAs) is the way to identify the best solutions in order to guide the search process. Fitness comparisons among solutions in single-objective optimization is straightforward, but when dealing with multiple objectives, it becomes a non-trivial task. Pareto dominance has been the most commonly adopted relation to compare solutions in a multiobjective optimization context. However, it has been shown that as the number of objectives increases, the convergence ability of approaches based on Pareto dominance decreases. In this paper, we propose three novel fitness assignment methods for many-objective optimization. We also perform a comparative study in order to investigate how effective are the proposed approaches to guide the search in high-dimensional objective spaces. Results indicate that our approaches behave better than six state-of-the-art fitness assignment methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bentley, P.J., Wakefield, J.P.: Finding Acceptable Solutions in the Pareto-Optimal Range using Multiobjective Genetic Algorithms. In: Chawdhry, P.K., Roy, R., Pant, R.K. (eds.) Soft Computing in Engineering Design and Manufacturing. Part 5, June 1997, pp. 231–240. Springer, London (1997) (Presented at the 2nd On-line World Conference on Soft Computing in Design and Manufacturing (WSC2))
Corne, D., Knowles, J.: Techniques for Highly Multiobjective Optimisation: Some Nondominated Points are Better than Others. In: Thierens, D. (ed.) 2007 Genetic and Evolutionary Computation Conference (GECCO 2007), July 2007, vol. 1, pp. 773–780. ACM Press, London (2007)
Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. KanGAL report 200001, Indian Institute of Technology, Kanpur, India (2000)
Deb, K., Mohan, R.S., Mishra, S.K.: Towards a Quick Computation of Well-Spread Pareto-Optimal Solutions. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 222–236. Springer, Heidelberg (2003)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multiobjective Optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145. Springer, USA (2005)
di Pierro, F., Khu, S.T., Savić, D.A.: An Investigation on Preference Order Ranking Scheme for Multiobjective Evolutionary Optimization. IEEE Transactions on Evolutionary Computation 11(1), 17–45 (2007)
Drechsler, N., Drechsler, R., Becker, B.: Multi-objective Optimisation Based on Relation favour. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 154–166. Springer, Heidelberg (2001)
Farina, M., Amato, P.: On the Optimal Solution Definition for Many-criteria Optimization Problems. In: Proceedings of the NAFIPS-FLINT International Conference 2002, June 2002, pp. 233–238. IEEE Service Center, Piscataway (2002)
Farina, M., Amato, P.: A fuzzy definition of optimality for many-criteria optimization problems. IEEE Transactions on Systems, Man, and Cybernetics Part A—Systems and Humans 34(3), 315–326 (2004)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading (1989)
Hughes, E.J.: Evolutionary Many-Objective Optimisation: Many Once or One Many? In: 2005 IEEE Congress on Evolutionary Computation (CEC 2005), September 2005, pp. 222–227. IEEE Service Center, Edinburgh (2005)
Hughes, E.J.: Fitness Assignment Methods for Many-Objective Problems. In: Knowles, J., Corne, D., Deb, K. (eds.) Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 307–329. Springer, Berlin (2008)
Khare, V.R., Yao, X., Deb, K.: Performance Scaling of Multi-objective Evolutionary Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 376–390. Springer, Heidelberg (2003)
Köppen, M., Yoshida, K.: Substitute Distance Assignments in NSGA-II for Handling Many-Objective Optimization Problems. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 727–741. Springer, Heidelberg (2007)
López Jaimes, A., Santana Quintero, L.V., Coello Coello, C.A.: Ranking methods in many-objective evolutionary algorithms. In: Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation, pp. 413–434. Springer, Berlin (2009)
Pareto, V.: Cours d’Economie Politique. Droz, Genève (1896)
Purshouse, R.C., Fleming, P.J.: Evolutionary Multi-Objective Optimisation: An Exploratory Analysis. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), December 2003, vol. 3, pp. 2066–2073. IEEE Press, Canberra (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Garza-Fabre, M., Pulido, G.T., Coello, C.A.C. (2009). Ranking Methods for Many-Objective Optimization. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds) MICAI 2009: Advances in Artificial Intelligence. MICAI 2009. Lecture Notes in Computer Science(), vol 5845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05258-3_56
Download citation
DOI: https://doi.org/10.1007/978-3-642-05258-3_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05257-6
Online ISBN: 978-3-642-05258-3
eBook Packages: Computer ScienceComputer Science (R0)