Abstract
We describe in this paper a new evolutionary method for the optimization of a modular neural network for multimodal biometry The proposed evolutionary method produces the best architecture of the modular neural network (number of modules, layers and neurons) and fuzzy inference systems (memberships functions and rules) as fuzzy integration methods. The integration of responses in the modular neural network is performed by using type-1 and type-2 fuzzy inference systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms, Concepts and Designs. Springer, Heidelberg (1999)
Hidalgo, D., Melin, P., Castillo, O.: Type-1 and Type-2 Fuzzy Inference Systems as Integration Methods in Modular Neural Networks for Multimodal Biometry and its Optimization with Genetic Algorithms. Journal of Automation, Mobile Robotics & Intelligent Systems 2(1), 1897–8649 (2008)
Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing, A Computational Approach to Learning and Machine. Intelligence Prentice Hall, Englewood Cliffs (1997)
Castro, J.R.: Tutorial Type-2 Fuzzy Logic: theory and applications. In: Universidad Autónoma de Baja California-Instituto Tecnológico de Tijuana, (October 9, 2006), www.hafsamx.org/cis-chmexico/seminar06/tutorial.pdf
Melin, P., Castillo, O., Gómez, E., Kacprzyk, J., Pedrycz, W.: Analysis and Design of Intelligent Systems Using Soft Computing Techniques. In: Advances in Soft Computing 41, Springer, Heidelberg (2007)
The 2007 International Joint Conference on Neural Networks, IJCNN, Conference Proceedings. Orlando, Florida, USA. August 12-17, IEEE Catalog Number:07CH37922C; ISBN: 1-4244-1380-X, ISSN: 1098-7576, ©2007 IEEE (2007)
Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing: An Evolutionary Approach for Neural Networks and Fuzzy Systems (Studies in Fuzziness and Soft Computing) (Hardcover - April 29) (2005)
Alvarado-Verdugo, J.M.: Reconocimiento de la persona por medio de su rostro y huella utilizando redes neuronales modulares y la transformada wavelet, Instituto Tecnológico de Tijuana (2006)
Melin, P., Castillo, O., Kacprzyk, J., Pedrycz, W.: Hybrid Intelligent Systems (Studies in Fuzziness and Soft Computing) (Hardcover - December 20) (2006)
Ramos-Gaxiola, J.: Redes Neuronales Aplicadas a la Identificación de Locutor Mediante Voz Utilizando Extracción de Características, Instituto Tecnológico de Tijuana (2006)
Mendoza, O., Melin, P., Castillo, O., Licea, P.: Type-2 Fuzzy Logic for Improving Training Data and Response Integration in Modular Neural Networks for Image Recognition. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 604–612. Springer, Heidelberg (2007)
Urias, J., Melin, P., Castillo, O.: A Method for Response Integration in Modular Neural Networks using Interval Type-2 Fuzzy Logic. In: FUZZ-IEEE 2007, Number 1 in FUZZ, London, UK, July 2007, pp. 247–252. IEEE, Los Alamitos (2007)
Urias, J., Hidalgo, D., Melin, P., Castillo, O.: A Method for Response Integration in Modular Neural Networks with Type-2 Fuzzy Logic for Biometric Systems. In: Melin, P., et al. (eds.) Analysis and Design of Intelligent Systems using Soft Computing Techniques, 1st edn., June 2007. Number 1 in Studies in Fuzziness and Soft Computing, vol. (1), pp. 5–15. Springer, Heidelberg (2007)
Urias, J., Hidalgo, D., Melin, P., Castillo, O.: A New Method for Response Integration in Modular Neural Networks Using Type-2 Fuzzy Logic for Biometric Systems. In: Proc.IJCNN-IEEE 2007, Orlando, USA, August 2007. IEEE, Los Alamitos (2007)
Melin, P., Castillo, O., Gómez, E., Kacprzyk, J.: Analysis and Design of Intelligent Systems using Soft Computing Techniques (Advances in Soft Computing) (Hardcover - July 11) (2007)
Mendoza, O., Melin, P., Castillo, O., Licea, P.: Modular Neural Networks and Type-2 Fuzzy Logic for Face Recognition. In: Reformat, M. (ed.) Proceedings of NAFIPS 2007, CD Rom, San Diego, June 2007, vol. (1). IEEE, Los Alamitos (2007)
Zadeh, L.A.: Knowledge representation in Fuzzy Logic. IEEE Transactions on knowledge data engineering 1, 89 (1989)
Zadeh, L.A.: Fuzzy Logic = Computing with Words. IEEE Transactions on Fuzzy Systems 4(2), 103 (1996)
Mendel, J.M.: UNCERTAIN Rule-Based Fuzzy Logic Systems, Introduction and New Directions. Prentice Hall, Englewood Cliffs (2001)
Mendel, J.M.: Why We Need Type-2 Fuzzy Logic Systems? Article is provided courtesy of Prentice Hall, by Jerry Mendel, May 11 (2001), http://www.informit.com/articles/article.asp?p=21312&rl=1
Mendel, J.M.: Uncertainty: General Discussions, Article is provided courtesy of Prentice Hall, by Jerry Mendel, May 11 (2001), http://www.informit.com/articles/article.asp?p=21313
Mendel, J.M., Bob-John, R.I.: Type-2 Fuzzy Sets Made Simple. IEEE Transactions on Fuzzy Systems 10(2), 117 (2002)
Karnik, N., Mendel, J.M.: Operations on type-2 fuzzy sets. In: Signal and Image Processing Institute, Department of Electrical Engineering-Systems. University of Southern California, Los Angeles (May 11, 2000)
Zadeh, L.A.: Fuzzy Logic. Computer 1(4), 83–93 (1998)
Hidalgo, D., Castillo, O., Melin, P.: Interval type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithms. International Journal of Biometrics 1(1), 114–128 (2008); Year of Publication: 2008, ISSN:1755-8301
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hidalgo, D., Melin, P., Licea, G., Castillo, O. (2009). Optimization of Type-2 Fuzzy Integration in Modular Neural Networks Using an Evolutionary Method with Applications in Multimodal Biometry. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds) MICAI 2009: Advances in Artificial Intelligence. MICAI 2009. Lecture Notes in Computer Science(), vol 5845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05258-3_40
Download citation
DOI: https://doi.org/10.1007/978-3-642-05258-3_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05257-6
Online ISBN: 978-3-642-05258-3
eBook Packages: Computer ScienceComputer Science (R0)