Abstract
The accuracy of stereo algorithms is commonly assessed by comparing the results against the Middlebury database. However, no equivalent data for automotive or robotics applications exist and these are difficult to obtain. We introduce a performance evaluation scheme and metrics for stereo algorithms at three different levels. This evaluation can be reproduced with comparably low effort and has very few prerequisites. First, the disparity images are evaluated on a pixel level. The second level evaluates the disparity data roughly column by column, and the third level performs an evaluation on an object level. We compare three real-time capable stereo algorithms with these methods and the results show that a global stereo method, semi-global matching, yields the best performance using our metrics that incorporate both accuracy and robustness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 47(1), 7–42 (2002)
Badino, H., Franke, U., Mester, R.: Free space computation using stochastic occupancy grids and dynamic programming. In: Workshop on Dynamical Vision, ICCV, Rio de Janeiro (2007)
Tech-News: Toyota’ lexus ls 460 employs stereo camera (viewed 2009/04/15), http://techon.nikkeibp.co.jp/english/NEWS_EN/20060301/113832/
Everingham, M., Zisserman, A., Williams, C.K.I., Van Gool, L., et al.: The 2005 pascal visual object classes challenge. In: Selected Proceedings of the 1st PASCAL Challenges Workshop. LNCS (LNAI), Springer, Heidelberg (2006)
Dreuw, P., Steingrube, P., Deselaers, T., Ney, H.: Smoothed disparity maps for continuous american sign language recognition. In: Iberian Conference on Pattern Recognition and Image Analysis, Póvoa de Varzim, Portugal (June 2009)
Vaudrey, T., Rabe, C., Klette, T., Milburn, J.: Differences between stereo and motion behaviour on synthetic and real-world stereo sequences. In: IEEE Conf. Proc. IVCNZ 2008 (2008)
Liu, Z., Klette, R.: Approximated ground truth for stereo and motion analysis on real-world sequences. In: Wada, T., Huang, F., Lin, S. (eds.) Proceedings PSIVT 2009. LNCS, vol. 5414. Springer, Heidelberg (2009)
Mariano, V.Y., Min, J., Park, J.-H., Kasturi, R., Mihalcik, D., Li, H., Doermann, D., Drayer, T.: Performance evaluation of object detection algorithms. In: International Conference on Pattern Recognition, vol. 3, p. 30965 (2002)
Barth, A., Franke, U.: Where will the oncoming vehicle be the next second? In: Intelligent Vehicles Symposium, 2008 IEEE (2008)
Stein, F.J.: Efficient computation of optical flow. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 79–86. Springer, Heidelberg (2004)
Franke, U.: Real-time stereo vision for urban traffic scene understanding. In: IEEE Conference on Intelligent Vehicles (2000)
Gehrig, S.K., Eberli, F., Meyer, T.: A real-time low-power stereo vision engine using semi-global matching. In: ICVS (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Steingrube, P., Gehrig, S.K., Franke, U. (2009). Performance Evaluation of Stereo Algorithms for Automotive Applications. In: Fritz, M., Schiele, B., Piater, J.H. (eds) Computer Vision Systems. ICVS 2009. Lecture Notes in Computer Science, vol 5815. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04667-4_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-04667-4_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04666-7
Online ISBN: 978-3-642-04667-4
eBook Packages: Computer ScienceComputer Science (R0)