Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Network Approach for HIV-1 Drug Resistance Prevention

  • Conference paper
Knowledge-Based and Intelligent Information and Engineering Systems (KES 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5712))

  • 752 Accesses

Abstract

In AIDS treatments, it is an imperative problem to reduce the risk of the drug resistance. The previous study discussed which HIV-1 gene products are an ideal drug target not to develop drug resistance by applying some ideas of the graph theory, and suggested that the drug resistance would not develop if the drug target molecule functions as ”hub” in a chemical network where HIV-1 gene products interact directly or indirectly with intracellular agents in a HIV-1 host cell. The present study fortifies this suggestion in mathematical framework. The study develops the expression for a probability of drug resistance developing over the two different types: non-hub and hub of drug targets, and demonstrates that the hub drug target is more favorable for the drug resistance prevention than the non-hub one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Volberding, P.A., Sande, M.A., Lange, J., Greene, W.C.: Global HIV/AIDS Medicine. Elsevier Inc., Amsterdam (2008)

    Google Scholar 

  2. Chiryo no tebiki 12th edn., http://www.hivjp.org/

  3. Sugiura, W.: Progress in antiretroviral drugs. Virus 55, 85–94 (2005)

    Google Scholar 

  4. Harada, K., Ishida, Y.: A hub gene in a HIV-1 gene regulatory network is a promising target for anti-HIV-1 drugs. In: Proc. of AROB 14th, pp. 522–525 (2009)

    Google Scholar 

  5. Ptak, R.G., et al.: Cataloging the HIV Type 1 Human Protein Interaction Network. AIDS Research And Human Retroviruses 24(12), 1497–1502 (2008)

    Article  Google Scholar 

  6. Zambrowicz, B.P., Sands, A.T.: Modeling drug action in the mouse with knockouts and RNA interference. Drug Discov. Today Targets 3, 198–207 (2004)

    Article  Google Scholar 

  7. Winzeler, E.A., et al.: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999)

    Article  Google Scholar 

  8. Giaever, G., et al.: Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002)

    Article  Google Scholar 

  9. Baraba’si, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004)

    Article  Google Scholar 

  10. Albert, R., Jeong, H., Barabasi, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)

    Article  Google Scholar 

  11. Ooi, S.L., et al.: Global synthetic-lethality analysis and yeast functional profiling. Trends Genet. 22, 56–63 (2006)

    Article  Google Scholar 

  12. Denome, S.A., Elf, P.K., Henderson, T.A., Nelson, D.E., Young, K.D.: Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J. Bacteriol. 181, 3981–3993 (1999)

    Google Scholar 

  13. Janoir, C., Zeller, V., Kitzis, M.D., Moreau, N.J., Gutmann, L.: High-level fluoroquinolone resistance in Streptococcus pneumoniae requires mutations in parC and gyrA. Antimicrob. Agents Chemother. 40, 2760–2764 (1996)

    Google Scholar 

  14. Hopkins, A.L.: Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Bio. 4(11), 682–690 (2008)

    Article  MathSciNet  Google Scholar 

  15. Dancey, J.E., Chen, H.X.: Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat. Rev. Drug Discov. 5, 649–659 (2006)

    Article  Google Scholar 

  16. Han, J.D., et al.: Evidence for dynamically organized modularity in the yeast proteinprotein interaction network. Nature 430, 88–93 (2004)

    Article  Google Scholar 

  17. Joy, M.P., Brock, A., Ingber, D.E., Huang, S.: High-betweenness proteins in the yeast protein interaction network. J. Biomed. Biotechnol. 2, 96–103 (2005)

    Article  Google Scholar 

  18. Yu, H., Kim, P.M., Sprecher, E., Trifonov, V., Gerstein, M.: The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput. Biol. 3, e59 (2007)

    Article  MathSciNet  Google Scholar 

  19. Hwang, W C., Zhang, A., Ramanathan, M.: Identification of information flowmodulating drug targets: a novel bridging paradigm for drug discovery. Clin. Pharmacol. Ther. (published online) doi:10.1038/clpt.2008.12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harada, K., Ishida, Y. (2009). A Network Approach for HIV-1 Drug Resistance Prevention. In: Velásquez, J.D., Ríos, S.A., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based and Intelligent Information and Engineering Systems. KES 2009. Lecture Notes in Computer Science(), vol 5712. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04592-9_97

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04592-9_97

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04591-2

  • Online ISBN: 978-3-642-04592-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics