Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Probabilistic Filter Protocol for Continuous Queries

  • Conference paper
Quality of Context (QuaCon 2009)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5786))

Included in the following conference series:

Abstract

Pervasive applications, such as location-based services and natural habitat monitoring, have attracted plenty of research interest. These applications make use of a large number of remote positioning devices like Global Positioning System (GPS) for collecting users’ physical locations. Generally, these devices have battery power limitation. They also cannot report very accurate position values. In this paper, we consider the evaluation of a long-standing (or continuous) query over inaccurate location data collected from positioning devices. Our goal is to develop an energy-efficient protocol, which provides some degree of confidence on the query answers evaluated on imperfect data. In particular, we propose the probabilistic filter, which governs GPS devices to decide upon whether location values collected should be reported to the server. We further discuss how these filters can be developed. This scheme reduces the cost of transmitting location updates, and hence the energy spent by the GPS devices. It also allows some portion of query processing to be deployed to the devices, thereby alleviating the processing burden of the server.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating probabilistic queries over imprecise data. In: SIGMOD 2003, pp. 551–562 (2003)

    Google Scholar 

  2. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise data in moving object environments. IEEE Trans. on Knowl. and Data Eng. 16(9), 1112–1127 (2004)

    Article  Google Scholar 

  3. Cheng, R., Kao, B., Prabhakar, S., Kwan, A., Tu, Y.-C.: Adaptive stream filters for entity-based queries with non-value tolerance. In: VLDB 2005, pp. 37–48 (2005)

    Google Scholar 

  4. Cheng, R., Xia, Y., Prabhakar, S., Shah, R., Vitter, J.S.: Efficient indexing methods for probabilistic threshold queries over uncertain data. In: VLDB 2004, pp. 876–887 (2004)

    Google Scholar 

  5. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. In: VLDB 2004, pp. 864–875 (2004)

    Google Scholar 

  6. Gedik, B., Liu, L.: Mobieyes: Distributed processing of continuously moving queries on moving objects in a mobile system. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 67–87. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Gedik, B., Wu, K.-L., Yu, P.S.: Efficient construction of compact shedding filters for data stream processing. In: ICDE 2008, pp. 396–405 (2008)

    Google Scholar 

  8. Han, S., Chan, E., Cheng, R., Lam, K.-Y.: A statistics-based sensor selection scheme for continuous probabilistic queries in sensor networks. Real-Time Syst. 35(1), 33–58 (2007)

    Article  MATH  Google Scholar 

  9. Hsueh, Y.-L., Zimmermann, R., Ku, W.-S.: Adaptive safe regions for continuous spatial queries over moving objects. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp. 71–76. Springer, Heidelberg (2009)

    Google Scholar 

  10. Leonhardi, A., Rothermel, K.: Architecture of a large-scale location service. In: ICDCS 2002, p. 465. IEEE Computer Society, Washington (2002)

    Google Scholar 

  11. Ljosa, V., Singh, A.K.: Apla: Indexing arbitrary probability distributions. In: ICDE 2007, pp. 946–955 (2007)

    Google Scholar 

  12. Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous queries over distributed data streams. In: SIGMOD 2003, pp. 563–574. ACM, New York (2003)

    Google Scholar 

  13. Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving-object representations. In: Proceedings of the 6th International Symposium on Advances in Spatial Databases, pp. 111–132. Springer, London (1999)

    Chapter  Google Scholar 

  14. Prabhakar, S., Xia, Y., Kalashnikov, D.V., Aref, W.G., Hambrusch, S.E.: Query indexing and velocity constrained indexing: Scalable techniques for continuous queries on moving objects. IEEE Trans. Comput. 51(10), 1124–1140 (2002)

    Article  MathSciNet  Google Scholar 

  15. Silberstein, A., Munagala, K., Yang, J.: Energy-efficient monitoring of extreme values in sensor networks. In: SIGMOD 2006, pp. 169–180. ACM, New York (2006)

    Google Scholar 

  16. Sistla, P.A., Wolfson, O., Chamberlain, S., Dao, S.: Querying the uncertain position of moving objects. In: Temporal Databases: Research and Practice, pp. 310–337. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  17. Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.: Indexing multi-dimensional uncertain data with arbitrary probability density functions. In: VLDB 2005, pp. 922–933. VLDB Endowment (2005)

    Google Scholar 

  18. Wolfson, O., Sistla, A.P., Chamberlain, S., Yesha, Y.: Updating and querying databases that track mobile units. Distrib. Parallel Databases 7(3), 257–387 (1999)

    Article  Google Scholar 

  19. Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: Scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases. In: ICDE 2005, pp. 643–654. IEEE Computer Society, Washington (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, J., Cheng, R., Zhang, Y., Jin, J. (2009). A Probabilistic Filter Protocol for Continuous Queries. In: Rothermel, K., Fritsch, D., Blochinger, W., Dürr, F. (eds) Quality of Context. QuaCon 2009. Lecture Notes in Computer Science, vol 5786. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04559-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04559-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04558-5

  • Online ISBN: 978-3-642-04559-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics