Nothing Special   »   [go: up one dir, main page]

Skip to main content

Detection of Database Intrusion Using a Two-Stage Fuzzy System

  • Conference paper
Information Security (ISC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5735))

Included in the following conference series:

Abstract

This paper presents a novel approach for detecting intrusions in databases based on fuzzy logic, which combines evidences from user’s current as well as past behavior. A first-order Sugeno fuzzy model is used to compute an initial belief for each transaction. Whether the current transaction is genuine, suspicious or intrusive is first decided based on this belief. If a transaction is found to be suspicious, its posterior belief is computed using the previous suspicion score and the fuzzy evidences obtained from the history databases by applying fuzzy-Bayesian inferencing. Final decision is made about a transaction according to its current suspicion score. Evaluation of the proposed method clearly shows that the application of fuzzy logic significantly reduces the number of false alarms, which is one of the core problems of existing database intrusion detection systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Murray, A.C.: “The Threat From Within”, Network Computing (August 2005), http://www.networkcomputing.com/showArticle.jhtml?articleID=166400792

  2. Sentz, K.: Combination of Evidence in Dempster-Shafer Theory, Sandia National Laboratories, US Department of Energy (July 11, 2008), http://www.sandia.gov/epistemic/Reports/SAND2002-0835.pdf

  3. Zadeh, L.A.: Soft Computing and Fuzzy Logic. IEEE Software 11(6), 48–56 (1994)

    Article  Google Scholar 

  4. Ross, T.J.: Fuzzy Logic with Engineering Applications, 2nd edn. Wiley International Edition (2007)

    Google Scholar 

  5. Hoglund, A.J., Hatonen, K., Sorvari, A.S.: A Computer Host-Based User Anomaly Detection Using the Self-Organizing Map. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN, July 2000, vol. 5, pp. 411–416 (2000)

    Google Scholar 

  6. Hu, W., Hu, W., Maybank, S.: AdaBoost-Based Algorithm for Network Intrusion Detection. IEEE Transactions on Systems, Man, and Cybernetics, Part B 38(2), 577–583 (2008)

    Article  Google Scholar 

  7. Chung, C.Y., Gertz, M., Levitt, K.: DEMIDS: A Misuse Detection System for Database Systems. In: Proceedings of the Integrity and Internal Control in Information System, pp. 159–178 (1999)

    Google Scholar 

  8. Lee, V., Stankovic, J., Son, S.: Intrusion Detection in Realtime Databases via Time Signatures. In: Proceedings of the 6th IEEE Real-Time Technology and Applications Symposium, RTAS, pp. 124–133 (2000)

    Google Scholar 

  9. Barbara, D., Goel, R., Jajodia, S.: Mining Malicious Data Corruption with Hidden Markov Models. In: Proceedings of the 16th Annual IFIP WG 11.3 Working Conference on Data and Application Security, July 2002, pp. 175–189 (2002)

    Google Scholar 

  10. Lee, S.Y., Low, W.L., Wong, P.Y.: Learning Fingerprints for a Database Intrusion Detection System. In: Gollmann, D., Karjoth, G., Waidner, M. (eds.) ESORICS 2002. LNCS, vol. 2502, pp. 264–280. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Hu, Y., Panda, B.: A Data Mining Approach for Database Intrusion Detection. In: Proceedings of the ACM Symposium on Applied Computing, pp. 711–716 (2004)

    Google Scholar 

  12. Bertino, E., Terzi, E., Kamra, A., Vakali, A.: Intrusion Detection in RBAC-Administered Databases. In: Proceedings of the 21st Annual Computer Security Applications Conference, ACSAC, December 2005, pp. 170–182 (2005)

    Google Scholar 

  13. Kamra, A., Bertino, E., Lebanon, G.: Mechanisms for Database Intrusion Detection and Response. In: Proceedings of the 2nd SIGMOD PhD Workshop on Innovative Database Research, IDAR 2008, June 2008, pp. 31–36 (2008)

    Google Scholar 

  14. Srivastava, A., Sural, S., Majumdar, A.K.: Weighted Intra-transactional Rule Mining for Database Intrusion Detection. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 611–620. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Dickerson, J.E., Juslin, J., Koukousoula, O., Dickerson, J.A.: Fuzzy Intrusion Detection. In: Proceedings of the IFSA World Congress and 20th NAFIPS International Conference, pp. 1506–1510 (2001)

    Google Scholar 

  16. Seo, H.S., Cho, T.H.: Application of Fuzzy Logic for Distributed Intrusion Detection. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3802, pp. 340–347. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Kundu, A., Sural, S., Majumdar, A.K.: Two-Stage Credit Card Fraud Detection Using Sequence Alignment. In: Bagchi, A., Atluri, V. (eds.) ICISS 2006. LNCS, vol. 4332, pp. 260–275. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Altschul, S.F., Gish, W., Miller, W., Myers, W., Lipman, J.: Basic Local Alignment Search Tool. Journal of Molecular Biology 215, 403–410 (1990)

    Article  Google Scholar 

  19. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-Based Outliers: Algorithms and Applications. The International Journal on Very Large Data Bases 8(3-4), 237–253 (2000)

    Article  Google Scholar 

  20. Jang, J.S., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall India, Englewood Cliffs (1997)

    Google Scholar 

  21. Transaction Processing Performance Council, TPC BenchmarkTM W (Web Commerce), Specification, Version 1.8 (February 2002), http://www.tpc.org/tpcw/default.asp

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Panigrahi, S., Sural, S. (2009). Detection of Database Intrusion Using a Two-Stage Fuzzy System. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds) Information Security. ISC 2009. Lecture Notes in Computer Science, vol 5735. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04474-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04474-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04473-1

  • Online ISBN: 978-3-642-04474-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics