Nothing Special   »   [go: up one dir, main page]

Skip to main content

Ordinal Regression Based Model for Personalized Information Retrieval

  • Conference paper
Advances in Information Retrieval Theory (ICTIR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5766))

Included in the following conference series:

Abstract

Retrieving relevant items as a response to a user query is the aim of each information retrieval system. But ‘without an understanding of what relevance means to users, it is difficult to imagine how a system can retrieve relevant information for users’ [1]. In this paper, we try to capture what relevance is for a particular user and model his profile implicitly considering his non declared preferences that are inferred from a ranking of a reduced set of retrieved documents that he produces. We propose an ordinal regression based model for interactive ranking which uses both the information given by this subjective ranking, as well as the multicriteria evaluation of these ranked documents, to adjust optimally the parameters of a ranking model. This model consists of a set of additive value functions which are built so as they are as compatible as possible with the subjective ranking. The preference information used in our model requires reasonable cognitive effort from the user.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schamber, L., Eisenberg, M., Nilan, M.: A re-examination of relevance: Toward a dynamic, situational definition. IPM 26(6), 755–776 (1990)

    Google Scholar 

  2. Taylor, R.S.: Question-negotiation and information seeking in libraries. College and Research Libraries 29, 178–194 (1968)

    Article  Google Scholar 

  3. Belkin, N.J., Kantor, P., Fox, E.A., Shaw, J.A.: Combining evidence of multiple query representations for information retrieval. IPM 31(3), 431–448 (1995)

    Google Scholar 

  4. Katzer, J., McGill, M., Tessier, J., Frakes, W., DasGupta, P.: A study of the overlap among document representations. Information Technology: Research and Development 1(4), 261–274 (1982)

    Google Scholar 

  5. Lee, J.H.: Combining multiple evidence from different properties of weighting schemes. In: SIGIR 1995, pp. 180–188 (1995)

    Google Scholar 

  6. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press, New York (1999)

    Google Scholar 

  7. Saracevic, T.: Relevance reconsidered 1996. In: Information Science: Integration in Perspective, Proceedings of the CoLIS-2 conference. Royal School of Library and Information Science, Copenhagen, Denmark, pp. 201–218 (1996)

    Google Scholar 

  8. Farah, M., Vanderpooten, D.: An outranking approach for information retrieval. Information Retrieval 11(4), 315–334 (2008)

    Article  Google Scholar 

  9. Ruthven, I., Lalmas, M.: A survey on the use of relevance feedback for information access systems. Knowl. Eng. Rev. 18(2), 95–145 (2003)

    Article  Google Scholar 

  10. Manning, C.D., Raghavan, P., Schtze, H.: Relevance feedback and query expansion. In: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Chapter  Google Scholar 

  11. Rocchio, J.: Relevance feedback in information retrieval, pp. 313–323. Prentice-Hall, Englewood Cliffs (1971)

    Google Scholar 

  12. Roy, B.: Main sources of inaccurate determination, uncertainty and imprecision. Mathematical and Computer Modelling 12(10-11), 1245–1254 (1989)

    Article  Google Scholar 

  13. Roy, B.: The outranking approach and the foundations of ELECTRE methods. Theory and Decision 31, 49–73 (1991)

    Article  MathSciNet  Google Scholar 

  14. Vincke, P.: Multicriteria Decision-Aid. John Wiley and Sons, Chichester (1992)

    MATH  Google Scholar 

  15. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization, Orlando edn. Academic Press, London (1985)

    MATH  Google Scholar 

  16. Zionts, S., Wallenius, J.: An interactive programming method for solving the multiple criteria problem. Manage. Sci. 22(6), 652–663 (1976)

    Article  MATH  Google Scholar 

  17. Benayoun, R., Laritchev, O., De Mongolfier, J., Tegny, J.: Linear programming with multiple objective functions: Step method (stem). Math. Program. 1(3), 366–375 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jacquet-Lagrèze, E., Siskos, Y.: Assessing a set of additive utility functions for multicriteria decision making: the UTA method. European Journal of Operational Research 10, 151–164 (1982)

    Article  MATH  Google Scholar 

  19. Jacquet-Lagrèze, E., Meziani, R., Slowinski, R.: Molp with an interactive assessment of a piecewise utility function. Eur. J. Oper. Res 31(3), 350–357 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Keeney, R., Raiffa, H.: Decisions with multiple objectives: Preferences and value tradeoffs. J. Wiley, New York (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Farah, M. (2009). Ordinal Regression Based Model for Personalized Information Retrieval. In: Azzopardi, L., et al. Advances in Information Retrieval Theory. ICTIR 2009. Lecture Notes in Computer Science, vol 5766. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04417-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04417-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04416-8

  • Online ISBN: 978-3-642-04417-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics