Abstract
The Minimum Length Polygon (MLP) is an interesting first order approximation of a digital contour. For instance, the convexity of the MLP is characteristic of the digital convexity of the shape, its perimeter is a good estimate of the perimeter of the digitized shape. We present here two novel equivalent definitions of MLP, one arithmetic, one combinatorial, and both definitions lead to two different linear time algorithms to compute them.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Montanari, U.: A note on minimal length polygonal approximation to a digitized contour. Communications of the ACM 13(1), 41–47 (1970)
Sklansky, J., Chazin, R.L., Hansen, B.J.: Minimum perimeter polygons of digitized silhouettes. IEEE Trans. Computers 21(3), 260–268 (1972)
Hobby, J.D.: Polygonal approximations that minimize the number of inflections. In: SODA 1993: Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms, pp. 93–102. Society for Industrial and Applied Mathematics, Philadelphia (1993)
Klette, R., Yip, B.: The length of digital curves. Machine Graphics Vision 9(3), 673–703 (2000) (Also research report CITR-TR-54, University of Auckland, NZ. 1999)
Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Analysis and Machine Intelligence 26(2), 252–258 (2004)
Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)
Sloboda, F., Stoer, J.: On piecewise linear approximation of planar Jordan curves. J. Comput. Appl. Math. 55(3), 369–383 (1994)
Sloboda, F., Zat́ko, B.: On one-dimensional grid continua in R\(\hat{~}\)2. Technical report, Institute of Control Theory and Robotics, Slovak Academy of Sciences, Bratislava, Slovakia (1996)
Sloboda, F., Zat́ko, B.: On approximation of jordan surfaces in 3D. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 365–386. Springer, Heidelberg (2002)
Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon. In: SCG 1987: Proceedings of the third annual symposium on Computational geometry, pp. 50–63. ACM, New York (1987)
Klette, R., Kovalevsky, V., Yip, B.: On length estimation of digital curves. In: Vision geometry VIII, SPIE Proceedings, vol. 3811, pp. 117–128 (1999)
Doerksen-Reiter, H., Debled-Rennesson, I.: Convex and concave parts of digital curves. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties for Incomplete Data. Computational Imaging and Vision, vol. 31, pp. 145–160. Springer, Heidelberg (2006)
Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image and Vision Computing 25(10), 1572–1587 (2007); Discrete Geometry for Computer Imagery 2005
Melkman, A.A.: On-line construction of the convex hull of a simple polyline. Inf. Process. Lett. 25(1), 11–12 (1987)
Brlek, S., Lachaud, J.O., Provençal, X., Reutenauer, C.: Lyndon + christoffel = digitally convex. Pattern Recognition 42(10), 2239–2246 (2009); Selected papers from the 14th IAPR International Conference on Discrete Geometry for Computer Imagery 2008
Lothaire, M.: Combinatorics on words. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1997)
Christoffel, E.B.: Observatio arithmetica. Annali di Mathematica 6, 145–152 (1875)
Borel, J.P., Laubie, F.: Quelques mots sur la droite projective réelle. J. Théor. Nombres Bordeaux 5(1), 23–51 (1993)
Berstel, J., Lauve, A., Reutenauer, C., Saliola, F.V.: Combinatorics on words of CRM Monograph Series, vol. 27. American Mathematical Society, Providence (2009); Christoffel words and repetitions in words
Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)
Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete Math. 23(3), 207–210 (1978)
Lothaire, M.: Applied combinatorics on words. Encyclopedia of Mathematics and its Applications, vol. 105. Cambridge University Press, Cambridge (2005)
Berstel, J., de Luca, A.: Sturmian words, Lyndon words and trees. Theoret. Comput. Sci. 178(1-2), 171–203 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Provençal, X., Lachaud, JO. (2009). Two Linear-Time Algorithms for Computing the Minimum Length Polygon of a Digital Contour. In: Brlek, S., Reutenauer, C., Provençal, X. (eds) Discrete Geometry for Computer Imagery. DGCI 2009. Lecture Notes in Computer Science, vol 5810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04397-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-04397-0_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04396-3
Online ISBN: 978-3-642-04397-0
eBook Packages: Computer ScienceComputer Science (R0)