Nothing Special   »   [go: up one dir, main page]

Skip to main content

Transformation from Complex Networks to Time Series Using Classical Multidimensional Scaling

  • Conference paper
Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5769))

Included in the following conference series:

Abstract

Various complex phenomena exist in the real world. Then, many methods have already been proposed to analyze the complex phenomena. Recently, novel methods have been proposed to analyze the deterministic nonlinear, possibly chaotic, dynamics using the complex network theory [1, 2, 3]. These methods evaluate the chaotic dynamics by transforming an attractor of nonlinear dynamical systems to a network. In this paper, we investigate the opposite direction: we transform complex networks to a time series. To realize the transformation from complex networks to time series, we use the classical multidimensional scaling. To justify the proposed method, we reconstruct networks from the time series and compare the reconstructed network with its original network. We confirm that the time series transformed from the networks by the proposed method completely preserves the adjacency information of the networks. Then, we applied the proposed method to a mathematical model of the small-world network (the WS model). The results show that the regular network in the WS model is transformed to a periodic time series, and the random network in the WS model is transformed to a random time series. The small-world network in the WS model is transformed to a noisy periodic time series. We also applied the proposed method to the real networks - the power grid network and the neural network of C. elegans - which are recognized to have small-world property. The results indicate that these two real networks could be characterized by a hidden property that the WS model cannot reproduce.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shimada, Y., Kimura, T., Ikeguchi, T.: Analysis method of chaotic dynamics using measures of complex networks. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp. 61–70. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Shimada, Y., Ikeguchi, T.: Analysis of chaotic attractors by measures of complex networks. In: The International Symposium on Nonlinear Theory and its Applications, pp. 140–143 (2008)

    Google Scholar 

  3. Zhang, J., Small, M.: Complex network from pseudoperiodic time series: Topology versus dynamics. Phys. Rev. Lett. 96, 238701 (2008)

    Article  Google Scholar 

  4. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Costa, L.D.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of complex networks: A survey of measurements. Advances in Physics 56, 167–242 (2007)

    Article  Google Scholar 

  6. Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  7. Hirata, Y., Horai, S., Aihara, K.: Reproduction of distance matrices and original time series from recurrence plots and their applications. Eur. Phys. J. Special Topics 164, 13–22 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haraguchi, Y., Shimada, Y., Ikeguchi, T., Aihara, K. (2009). Transformation from Complex Networks to Time Series Using Classical Multidimensional Scaling. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04277-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04277-5_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04276-8

  • Online ISBN: 978-3-642-04277-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics