Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Power of Clause-Learning SAT Solvers with Restarts

  • Conference paper
Principles and Practice of Constraint Programming - CP 2009 (CP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5732))

  • 1871 Accesses

Abstract

In this work, we improve on existing work that studied the relationship between the proof system of modern SAT solvers and general resolution. Previous contributions such as those by Beame et al (2004), Hertel et al (2008), and Buss et al (2008) demonstrated that variations on modern clause-learning SAT solvers were as powerful as general resolution. However, the models used in these studies required either extra degrees of non-determinism or a preprocessing step that are not utilized by any state-of-the-art SAT solvers in practice. In this paper, we prove that modern SAT solvers that learn asserting clauses indeed p-simulate general resolution without the need for any additional techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many restarts and bounded-width resolution. In: SAT 2009 (to appear, 2009)

    Google Scholar 

  2. Audemard, G., Bordeaux, L., Hamadi, Y., Jabbour, S., Sais, L.: A generalized framework for conflict analysis. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 21–27. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Bayardo, R.J.J., Schrag, R.C.: Using CSP look-back techniques to solve real-world SAT instances. In: Proceedings of AAAI 1997, pp. 203–208 (1997)

    Google Scholar 

  4. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. JAIR 22, 319–351 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: Resolution refinements that characterize DLL algorithms with clause learning. Logical Methods in Computer Science 4, 4 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Log. 44(1), 36–50 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 121–135. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  10. Hertel, A.P., Bacchus, F., Pitassi, T., Van Gelder, A.: Clause learning can effectively p-simulate general propositional resolution. In: Proc. of AAAI 2008, pp. 283–290 (2008)

    Google Scholar 

  11. Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proc. of IJCAI 2007, pp. 2318–2323 (2007)

    Google Scholar 

  12. Marques-Silva, J.P., Sakallah, K.A.: GRASP - A New Search Algorithm for Satisfiability. In: Proceedings of ICCAD 1996, pp. 220–227 (1996)

    Google Scholar 

  13. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient sat solver. In: Proceedings of DAC 2001 (June 2001)

    Google Scholar 

  14. Pipatsrisawat, K., Darwiche, A.: Width-based restart policies for clause-learning satisfiability solvers. In: Proceedings of SAT 2009 (to appear, 2009)

    Google Scholar 

  15. Pipatsrisawat, K., Darwiche, A.: Rsat 2.0: Sat solver description. Tech. Rep. D–153, Automated Reasoning Group, Comp. Sci. Department, UCLA (2007)

    Google Scholar 

  16. Pipatsrisawat, K., Darwiche, A.: A new clause learning scheme for efficient unsatisfiability proofs. In: Proceedings of AAAI 2008, pp. 1481–1484 (2008)

    Google Scholar 

  17. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sang, T., Beame, P., Kautz, H.: Heuristics for fast exact model counting. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 226–240. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Van Gelder, A.: Pool resolution and its relation to regular resolution and dpll with clause learning. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 580–594. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in boolean satisfiability solver. In: ICCAD 2001, pp. 279–285 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pipatsrisawat, K., Darwiche, A. (2009). On the Power of Clause-Learning SAT Solvers with Restarts. In: Gent, I.P. (eds) Principles and Practice of Constraint Programming - CP 2009. CP 2009. Lecture Notes in Computer Science, vol 5732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04244-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04244-7_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04243-0

  • Online ISBN: 978-3-642-04244-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics