Nothing Special   »   [go: up one dir, main page]

Skip to main content

Weight Constraint Programs with Functions

  • Conference paper
Logic Programming and Nonmonotonic Reasoning (LPNMR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5753))

Abstract

In this paper we consider a new class of logic programs, called weight constraint programs with functions, which are lparse programs incorporating functions over non-Herbrand domains. We define answer sets for these programs and develop a computational mechanism based on loop completion. We present our results in two stages. First, we formulate loop formulas for lparse programs (without functions). Our result improves the previous formulations in that our loop formulas do not introduce new propositional variables, nor there is a need of translating lparse programs to nested expressions. Building upon this result we extend the work to weight constraint programs with functions. We show that the loop completion of such a program can be transformed to a Constraint Satisfaction Problem (CSP) whose solutions correspond to the answer sets of the program, hence off-the-shelf CSP solvers can be used for answer set computation. We show some preliminary experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baselice, S., Bonatti, P.A., Criscuolo, G.: On finitely recursive programs. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 89–103. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Cabalar, P.: A functional action language front-end. In: (presented at) The Third International Workshop on Answer Set Programming: Advances in Theory and Implementation, Bath, UK (July 2005), http://www.dc.fi.udc.es/~cabalar/asp05_C.pdf

  3. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: Theory and implementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 372–379 (2007)

    Google Scholar 

  6. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and Practice of Logic Programming 5(1-2), 45–74 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lee, J., Meng, Y.: On loop formulas with variables. In: Proceedings of Eleventh International Conference on Principles of Knowledge Representation and Reasoning, Sydney, Australia, pp. 444–453 (2008)

    Google Scholar 

  9. Lee, J., Lifschitz, V.: Loop formulas for disjunctive logic programs. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 451–465. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Lin, F., Wang, Y.: Answer set programming with functions. In: Proceedings of Eleventh International Conference on Principles of Knowledge Representation and Reasoning, Sydney, Australia, pp. 454–464 (2008)

    Google Scholar 

  11. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by sat solvers. Artificial Intelligence 157(1-2), 115–137 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, L., Truszczynski, M.: Properties and applications of programs with monotone and convex constraints. Journal of Artificial Intelligence Research 27, 299–334 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Marek, V., Niemelä, I., Truszczyński, M.: Logic programs with monotone abstract constraint atoms. Theory and Practice of Logic Programming 8(2), 167–199 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and constraint logic programming. Annals of Mathematics and Artificial Intelligence 53(1-4), 251–287 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Niemelä, I., Simons, P.: Extending the smodels system with cardinality and weight constraints. In: Logic-Based Artificial Intelligence, pp. 491–521. Kluwer Academic Publishers, Dordrecht (2000)

    Chapter  Google Scholar 

  16. Pearce, D., Valverde, A.: Towards a first order equilibrium logic for nonmonotonic reasoning. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 147–160. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Rina, D.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  18. Simkus, M., Eiter, T.: \(\mathbb{FDNC}\): Decidable non-monotonic disjunctive logic programs with function symbols. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 514–530. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. You, J.-H., Liu, G.: Loop formulas for logic programs with arbitrary constraint atoms. In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, Chicago, Illinois, USA, pp. 584–589. AAAI Press, Menlo Park (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., You, JH., Yuan, LY., Zhang, M. (2009). Weight Constraint Programs with Functions. In: Erdem, E., Lin, F., Schaub, T. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2009. Lecture Notes in Computer Science(), vol 5753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04238-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04238-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04237-9

  • Online ISBN: 978-3-642-04238-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics