Abstract
We define the semantics of logic programs with (abstract) constraint atoms in a way closely tied to default logic. Like default logic, formulas in rules are evaluated using the classical entailment relation, so a constraint atom can be represented by an equivalent propositional formula. Therefore, answer sets are defined in a way closely related to default extensions. The semantics defined this way enjoys two properties generally considered desirable for answer set programming − minimality and derivability. The derivability property is very important because it guarantees free of self-supporting loops in answer sets. We show that when restricted to basic logic programs, this semantics agrees with the conditional-satisfaction based semantics. Furthermore, answer sets by the minimal-model based semantics can be recast in our approach. Consequently, the default approach gives a unifying account of the major existing semantics for logic programs with constraint atoms. This also makes it possible to characterize, in terms of the minimality and derivability properties, the precise relationship between them and contrast with others.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Marriott, K., Stuckey, P.: Programming with Constraints. MIT Press, Cambridge (1998)
Kemp, D., Stuckey, P.: Semantics of logic programs with aggregates. In: Proc. Int’l Symposium on Logic Programming, pp. 387–401. MIT Press, Cambridge (1991)
Calimeri, F., Faber, W., Leone, N., Perri, S.: Declarative and computational properties of logic programs with aggregates. In: IJCAI 2005, pp. 406–411 (2005)
Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004)
Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implementation of aggregate functions in the dlv system. TPLP 8(5) (2008)
Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005)
Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice in answer set programming. In: AAAI 2008, pp. 472–479 (2008)
Liu, L., Truszczynski, M.: Properties and applications of programs with monotone and convex constraints. JAIR 7, 299–334 (2006)
Liu, L., Pontelli, E., Son, T., Truszczynski, M.: Logic programs with abstract constraint atoms: the role of computations. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 286–301. Springer, Heidelberg (2007)
Marek, V.W., Remmel, J.B.: Set constraints in logic programming. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 167–179. Springer, Heidelberg (2004)
Marek, V.W., Truszczynski, M.: Logic programs with abstract constraint atoms. In: AAAI 2004, pp. 86–91 (2004)
Pelov, W., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of logic programs with aggregates. TPLP 7(3), 301–353 (2007)
Shen, Y.D., You, J.H.: A generalized Gelfond-Lifschitz transformation for logic programs with abstract constraints. In: AAAI 2007, pp. 483–488 (2007)
Simons, P., Niemela, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)
Son, T.C., Pontelli, E., Tu, P.H.: Answer sets for logic programs with arbitrary abstract constraint atoms. JAIR 29, 353–389 (2007)
Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2(4), 526–541 (2001)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP 1988, pp. 1070–1080 (1988)
Gelfond, M.: Answer sets. Handbook of Knowledge Representation. Elsevier, Amsterdam (2008)
van Gelder, A.: The alternating fixpoint of logic programs with negation. In: PODS, pp. 1–10 (1989)
Son, T.C., Pontelli, E.: A constructive semantic characterization of aggregates in answer set programming. TPLP 7(3), 355–375 (2007)
Denecker, M., Pelov, N., Bruynooghe, M.: Ultimate well-founded and stable semantics for logic programs with aggregates. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 212–226. Springer, Heidelberg (2001)
Liu, G.H., You, J.H.: Lparse programs revisited: Semantics and representation of aggregates. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 347–361. Springer, Heidelberg (2008)
Lifschitz, V.: Twelve definitions of a stable model. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 37–51. Springer, Heidelberg (2008)
Denecker, M., Vennekens, J.: Building a knowledge base sysem for an integration of logic programmng and classical logic. In: ICLP 2009, pp. 71–76 (2009)
Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. Artif. Intell. 172(12-13), 1495–1539 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shen, YD., You, JH. (2009). A Default Approach to Semantics of Logic Programs with Constraint Atoms. In: Erdem, E., Lin, F., Schaub, T. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2009. Lecture Notes in Computer Science(), vol 5753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04238-6_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-04238-6_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04237-9
Online ISBN: 978-3-642-04238-6
eBook Packages: Computer ScienceComputer Science (R0)