Nothing Special   »   [go: up one dir, main page]

Skip to main content

Shallow Features for Differentiating Disease-Treatment Relations Using Supervised Learning A Pilot Study

  • Conference paper
Text, Speech and Dialogue (TSD 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5729))

Included in the following conference series:

Abstract

Clinical narratives provide an information rich, nearly unexplored corpus of evidential knowledge that is considered as a challenge for practitioners in the language technology field, particularly because of the nature of the texts (excessive use of terminology, abbreviations, orthographic term variation), the significant opportunities for clinical research that such material can provide and the potentially broad impact that clinical findings may have in every day life. It is therefore recognized that the capability to automatically extract key concepts and their relationships from such data will allow systems to properly understand the content and knowledge embedded in the free text which can be of great value for applications such as information extraction and question & answering. This paper gives a brief presentation of such textual data and its semantic annotation, and discusses the set of semantic relations that can be observed between diseases and treatments in the sample. The problem is then designed as a supervised machine learning task in which the relations are tried to be learned using pre-annotated data. The challenges designing the problem and empirical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Bruijn, B., Martin, J.: Literature mining in molecular biology. In: Baud, R., Ruch, P. (eds.) EFMI Workshop on NLP in Biomedical Applications, Nicosia, Cyprus, pp. 1–5 (2002)

    Google Scholar 

  2. Girju, R., Nakov, P., Nastase, V., Szpakowicz, S., Turney, P., Yuret, D.: SemEval-2007 Task 04: Classification of Semantic Relations between Nominals (2007)

    Google Scholar 

  3. Rosario, B., Hearst, M.A.: Classifying Semantic relations in Bioscience Texts. In: Proceedings of the 42nd Annual Meeting on ACL, Barcelona (2004)

    Google Scholar 

  4. Vintar, S., Buitelaar, P., Volk, M.: Semantic relations in concept-based cross-language medical information retrieval. In: Adaptive Text Extraction&Mining Workshop, Croatia (2003)

    Google Scholar 

  5. Roberts, A., Gaizauskas, R., Hepple, M.: Extracting Clinical Relationships from Patient Narratives. In: BioNLP 2008, Ohio, USA, pp. 10–18 (2008)

    Google Scholar 

  6. Zhou, G., Su, J., Zhang, J., Zhang, M.: Exploring Various Knowledge in Relation Extraction. In: Proc. of the 43rd Annual Meeting of the ACL, Michigan, pp. 427–434 (2005)

    Google Scholar 

  7. Sibanda, T.C.: Was the Patient Cured? Understanding Semantic Categories and Their Relationships in Patient Records. Master Thesis. Electrical Engineering & CS. MIT (2006)

    Google Scholar 

  8. Kokkinakis, D., Thurin, A.: Applying MeSH® to the (Swedish) Clinical Domain - Evaluation and Lessons learned. 6th Scand. Health Info. Conf. Kalmar, Sweden (2008)

    Google Scholar 

  9. Kokkinakis, D.: Reducing the Effect of Name Explosion. LREC Workshop: Beyond Named Entity Recognition Semantic Labeling for NLP tasks. Portugal (2004)

    Google Scholar 

  10. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    Google Scholar 

  11. Girju, R.: Support vector machines applied to the classification of semantic relations in nominalized noun phrases. In: HLT-NAACL W’hop on Lexical Semantics, Boston. US (2004)

    Google Scholar 

  12. Wang, T., Li, Y., Bontcheva, K., Cunningham, H., Wang, J.: Automatic extraction of hierarchical relations from text. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 215–229. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Giles, C.B., Wren, J.D.: Large-scale directional relationship extraction and resolution. BMC Bioinformatics 9(Suppl. 9), S11 (2008)

    Article  Google Scholar 

  14. Pustejovsky, J., Castaňo, J., Zhang, J.: Robust Relational Parsing over Biomedical literature: Extracting Inhibit Relations. In: Proc. 7th Biocomputing Symposium (2002)

    Google Scholar 

  15. Mustafaraj, E., Hoof, M., Freisleben, B.: Mining Diagnostic Text Reports by Learning to Annotate Knowledge Roles. In: Kao, A., Poteet, S. (eds.) NLP&TM, pp. 46–67. Springer, Heidelberg (2007)

    Google Scholar 

  16. Sætre, R., Sagae, K., Tsujii, J.: Syntactic features for protein-protein interaction extraction. In: 2nd International Symposium on Languages in Biology and Medicine, Singapore (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kokkinakis, D. (2009). Shallow Features for Differentiating Disease-Treatment Relations Using Supervised Learning A Pilot Study . In: Matoušek, V., Mautner, P. (eds) Text, Speech and Dialogue. TSD 2009. Lecture Notes in Computer Science(), vol 5729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04208-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04208-9_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04207-2

  • Online ISBN: 978-3-642-04208-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics