Abstract
The first part of the chapter describes some examples of multimedia forgery. Here, multimedia data, including images, audio recordings or videos, etc., are forged by any of the following operations: data removal, replacement, replication, photomontage, or computer-aided media generation. The second part presents the concept of multimedia forensics and its corresponding functions. Multimedia forensics is carried out by extracting valuable information from multimedia content and using it to identify or authenticate the origin or source of multimedia and, in the process, to detect forgeries. The third part reviews general forgery detection techniques and compares their performance. Here, existing forgery detection methods are classified into 3 groups: watermarking-based scheme, perceptual hash-based scheme, and multimedia forensic-based scheme. Each of these performs at different levels of efficiency and accuracy. The fourth part investigates multimedia forensic-based forgery detection schemes. These forensic methods are composed of special features (correlation, double compression, light, and media statistical); each performs unique functions such as duplication detection, photomontage detection and synthetic image detection. The fifth part addresses some topical and timely issues, focusing on detection accuracy, counter attacks, test bed, and video forgery, etc. The last section discusses future prospects and makes some conclusions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
K. Hafner: The camera never lies, but the software can, New York Times (11 March 2004)
W.J. Mitchell: When is seeing believing?, Sci. Am. 2(1), 44–49 (1994)
I.J. Cox, M.L. Miller, J.A. Bloom: Digital Watermarking (Morgan Kaufmann, San Francisco, CA 2002)
I.J. Cox, M.L. Miller, J.M.G. Linnartz, T. Kalker: A review of watermarking principles and practices. In: Digital Signal Processing for Multimedia Systems, ed. by K.K. Parhi, T. Nishitani (Marcel Dekker, New York, USA 1999) pp. 461–482
P. Blythe, J. Fridrich: Secure digital camera, Digital Forensic Research Workshop, Baltimore, Maryland (2004)
C.-Y. Lin, S.-F. Chang: A robust image authentication algorithm surviving JPEG lossy compression, Proc. SPIE 3312, 296–307 (1998)
A.C. Popescu, Statistical tools for digital image forensics, Technical Report TR2005-531, Dartmouth College (2005)
H.T. Sencar, N. Memon: Overview of State-of-the-Art in Digital Image Forensics, Statistical Science and Interdisciplinary Research (World Scientific Press, Singapore 2008)
J. Adams, K. Parulski, K. Spaulding: Color processing in digital cameras, IEEE Micro 18(6), 20–31 (1998)
K.S. Choi, E.Y. Lam, K.K.Y. Wong: Source camera identification using footprints from lens aberration, Proc. SPIE 6069, 172–179 (2006)
Z.J. Geradts, J. Bijhold, M. Kieft, K. Kurosawa, K. Kuroki, N. Saitoh: Methods for identification of images acquired with digital camera, Proc. SPIE 4232, 502–512 (2001)
J. Lukas, J. Fridrich, M. Goljan: Digital camera identification from sensor pattern noise, IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2006)
S. Bayram, H.T. Sencar, N. Memon, İ. Avcıbaş: Source camera identification based on CFA interpolation, 2005 IEEE Int. Conference on Image Processing (ICIP) (2005)
Y. Long, Y. Huang: Image based source camera identification using demosaicking, 2006 IEEE Int. Conference on Multimedia Siginal Processing (MMSP) (2006)
O. Celiktutan, İ. Avcıbaş, B. Sankur, N. Memon: Source cell-phone identification, Proc. ADCOM (2005)
M. Kharrazi, H.T. Sencar, N. Memon: Blind source camera identification, 2004 IEEE Int. Conference on Image Processing (ICIP) (2004)
M.-J. Tsai, G.-H. Wu: Using image features to identify camera sources, 2006 IEEE Int. Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2006)
K. Kurosawa, K. Kuroki, N. Saitoh: CCD Fingerprint Method, Proc. 1999 IEEE Int. Conference on Image Processing (ICIP) (1999)
S. Bayram, H.T. Sencar, N. Memon: Classification of digital camera-models based on demosaicing artifacts, Digit. Investig. 5(1/2), 49–59 (2008)
J. Lukas, J. Fridrich, M. Goljan: Digital camera identification from sensor pattern noise, IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2006)
Y. Sutcu, S. Bayram, H.T. Sencar, N. Memon: Improvements on sensor noise based source camera identification, Proc. IEEE ICME (2007)
M. Chen, J. Fridrich, M. Goljan: Digital imaging sensor identification (further study), Proc. SPIE 6505(1), 65050P (2007)
N. Khanna, A.K. Mikkilineni, G.T.-C. Chiu, J.P. Allebach, E.J. Delp: Forensic classification of imaging sensor types, Proc. SPIE 6505, 65050U (2007)
N. Khanna, A.K. Mikkilineni, G.T.-C. Chiu, J.P. Allebach, E.J. Delp: Scanner identification using sensor pattern noise, Proc. SPIE 6505, 65050K (2007)
H. Gou, A. Swaminathan, M. Wu: Robust scanner identification based on noise features, Proc. SPIE 6505, 65050S (2007)
E. Dirik, H.T. Sencar, N. Memon: Source camera identification based on sensor dust characteristics, Proc. IEEE SAFE (2007)
A.C. Popescu, H. Farid: Exposing digital forgeries by detecting traces of re-sampling, IEEE Trans. Signal Process. 53(2), 758–767 (2005)
A.C. Popescu, H. Farid: Exposing digital forgeries in color filter array interpolated images, IEEE Trans. Signal Process. 53(10), 3948–3959 (2005)
T. Sikora: MPEG-1 and MPEG-2 digital video coding standards. In: Digital Consumer Electronics Handbook, ed. by R.K. Jurgen (McGraw-Hill, New York 1997)
A. Popescu, H. Farid: Statistical tools for digital forensics, 6th Int. Workshop on Information Hiding, Toronto, Canada (2004)
W. Wang, H. Farid: Exposing digital forgeries in video by detecting double MPEG compression, MM&Sec’06, 26–27 September 2006, Geneva, Switzerland (2006)
M.K. Johnson, H. Farid: Exposing digital forgeries by detecting inconsistencies in lighting, Proc. ACM Multimedia Security Workshop (2005)
M.K. Johnson, H. Farid: Exposing digital forgeries through chromatic aberration, Proc. ACM Multimedia Security Workshop (2006)
T.E. Boult, G. Wolberg: Correcting chromatic aberrations using image warping, Proc. IEEE Conference on Computer Vision and Pattern Recognition (1992) pp. 684–687
M. K. Johnson, H. Farid: Metric measurements on a plane from a single image, Technical Report TR2006-579, Dartmouth College, Computer Science (2006)
H. Farid: Detecting digital forgeries using bispectral analysis, Technical Report AIM-1657, Massachusetts Institute of Technology (1999)
Y. Sutcu, B. Coskun, H.T. Sencar, N. Memon: Tamper detection based on regularity of wavelet transform coefficients, 2007 IEEE Int. Conference on Image Processing (ICIP) (2007)
B. Sankur, S. Bayram, İ. Avcıbaş, N. Memon: Image manipulation detection, J. Electron. Imaging 15(4), 041102 (2006)
S. Bayram, İ. Avcıbaş, B. Sankur, N. Memon: Image manipulation detection with binary similarity measures, EUSIPCO (2004)
İ. Avcıbaş, S. Bayram, N. Memon, M. Ramkumar, B. Sankur: A classifier design for detecting image manipulations, Proc. 2004 Int. Conference on Image Processing, Singapore (2004)
R. Duda, P. Hart: Pattern Classification and Scene Analysis (John Wiley and Sons, San Francisco 1973)
J. Fridrich, D. Soukal, J. Lukas: Detection of copy-move forgery in digital images, Proc. 2003 Digital Forensic Research Workshop (2003)
A.C. Popescu, H. Faridy: Exposing digital forgeries by detecting duplicated image regions, Technical Report TR2004-515, Dartmouth College, Computer Science (2004)
H. Farid: Exposing digital forgeries in scientific images, ACM MM&Sec’06, 26–27 September 2006, Geneva, Switzerland (2006)
T.-T. Ng, S.-F. Chang, M.-P. Tsui: Physics-motivated features for distinguishing photographic images and computer graphics, ACM MM’05, Singapore (2005)
A.E. Dirik, S. Bayram, H.T. Sencar, N. Memon: New features to identify computer generated images, 2007 IEEE Int. Conference on Image Processing (ICIP) (2007)
S. Dehnie, T. Sencar, N. Memon: Digital image forensics for identifying computer generated and digital camera images, 2006 IEEE Int. Conference on Image Processing (ICIP) (2006)
H. Farid, S. Lyu: Higher-order wavelet statistics and their application to digital forensics, 2003 Conference on Computer Vision and Pattern Recognition Workshop, Vol. 8 (2003)
N. Tian-Tsong, C. Shih-Fu, H. Yu-Feng, X. Lexing, T. Mao-Pei: Physics-motivated features for distinguishing photographic images and computer graphics, 2005 ACM Multimedia, Singapore (2005)
Y. Wang, P. Moulin: On discrimination between photorealistic and photographic images, 2006 IEEE Int. Conference on Acoustics, Speech and Signal Processing, IEEE, May 2006, Vol. 2 (2006) pp. II-161–II-164
S. Dehnie, H.T. Sencar, N. Memon: Identification of computer generated and digital camera images for digital image forensics, Proc. 2006 IEEE Int. Conference on Image Processing (ICIP) (2006)
T.-T. Ng, S.-F. Chang: A model for image splicing, 2004 IEEE Int. Conference on Image Processing (ICIP) (2004)
T.-T. Ng, S.-F. Chang, Q. Sun: Blind detection of photomontage using higher order statistics, 2004 IEEE Int. Conference on Circuits and Systems (ISCAS) (2004)
T.-T. Ng, S.-F. Chang: Blind detection of digital photomontage using higher order statistics, ADVENT Technical Report #201-2004-1, Columbia University (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Lian, S., Zhang, Y. (2010). Multimedia Forensics for Detecting Forgeries. In: Stavroulakis, P., Stamp, M. (eds) Handbook of Information and Communication Security. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04117-4_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-04117-4_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04116-7
Online ISBN: 978-3-642-04117-4
eBook Packages: EngineeringEngineering (R0)