Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

The first part of the chapter describes some examples of multimedia forgery. Here, multimedia data, including images, audio recordings or videos, etc., are forged by any of the following operations: data removal, replacement, replication, photomontage, or computer-aided media generation. The second part presents the concept of multimedia forensics and its corresponding functions. Multimedia forensics is carried out by extracting valuable information from multimedia content and using it to identify or authenticate the origin or source of multimedia and, in the process, to detect forgeries. The third part reviews general forgery detection techniques and compares their performance. Here, existing forgery detection methods are classified into 3 groups: watermarking-based scheme, perceptual hash-based scheme, and multimedia forensic-based scheme. Each of these performs at different levels of efficiency and accuracy. The fourth part investigates multimedia forensic-based forgery detection schemes. These forensic methods are composed of special features (correlation, double compression, light, and media statistical); each performs unique functions such as duplication detection, photomontage detection and synthetic image detection. The fifth part addresses some topical and timely issues, focusing on detection accuracy, counter attacks, test bed, and video forgery, etc. The last section discusses future prospects and makes some conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. Hafner: The camera never lies, but the software can, New York Times (11 March 2004)

    Google Scholar 

  2. W.J. Mitchell: When is seeing believing?, Sci. Am. 2(1), 44–49 (1994)

    Google Scholar 

  3. I.J. Cox, M.L. Miller, J.A. Bloom: Digital Watermarking (Morgan Kaufmann, San Francisco, CA 2002)

    Google Scholar 

  4. I.J. Cox, M.L. Miller, J.M.G. Linnartz, T. Kalker: A review of watermarking principles and practices. In: Digital Signal Processing for Multimedia Systems, ed. by K.K. Parhi, T. Nishitani (Marcel Dekker, New York, USA 1999) pp. 461–482

    Google Scholar 

  5. P. Blythe, J. Fridrich: Secure digital camera, Digital Forensic Research Workshop, Baltimore, Maryland (2004)

    Google Scholar 

  6. C.-Y. Lin, S.-F. Chang: A robust image authentication algorithm surviving JPEG lossy compression, Proc. SPIE 3312, 296–307 (1998)

    Article  Google Scholar 

  7. A.C. Popescu, Statistical tools for digital image forensics, Technical Report TR2005-531, Dartmouth College (2005)

    Google Scholar 

  8. H.T. Sencar, N. Memon: Overview of State-of-the-Art in Digital Image Forensics, Statistical Science and Interdisciplinary Research (World Scientific Press, Singapore 2008)

    Google Scholar 

  9. J. Adams, K. Parulski, K. Spaulding: Color processing in digital cameras, IEEE Micro 18(6), 20–31 (1998)

    Article  Google Scholar 

  10. K.S. Choi, E.Y. Lam, K.K.Y. Wong: Source camera identification using footprints from lens aberration, Proc. SPIE 6069, 172–179 (2006)

    Google Scholar 

  11. Z.J. Geradts, J. Bijhold, M. Kieft, K. Kurosawa, K. Kuroki, N. Saitoh: Methods for identification of images acquired with digital camera, Proc. SPIE 4232, 502–512 (2001)

    Google Scholar 

  12. J. Lukas, J. Fridrich, M. Goljan: Digital camera identification from sensor pattern noise, IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2006)

    Article  Google Scholar 

  13. S. Bayram, H.T. Sencar, N. Memon, İ. Avcıbaş: Source camera identification based on CFA interpolation, 2005 IEEE Int. Conference on Image Processing (ICIP) (2005)

    Google Scholar 

  14. Y. Long, Y. Huang: Image based source camera identification using demosaicking, 2006 IEEE Int. Conference on Multimedia Siginal Processing (MMSP) (2006)

    Google Scholar 

  15. O. Celiktutan, İ. Avcıbaş, B. Sankur, N. Memon: Source cell-phone identification, Proc. ADCOM (2005)

    Google Scholar 

  16. M. Kharrazi, H.T. Sencar, N. Memon: Blind source camera identification, 2004 IEEE Int. Conference on Image Processing (ICIP) (2004)

    Google Scholar 

  17. M.-J. Tsai, G.-H. Wu: Using image features to identify camera sources, 2006 IEEE Int. Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2006)

    Google Scholar 

  18. K. Kurosawa, K. Kuroki, N. Saitoh: CCD Fingerprint Method, Proc. 1999 IEEE Int. Conference on Image Processing (ICIP) (1999)

    Google Scholar 

  19. S. Bayram, H.T. Sencar, N. Memon: Classification of digital camera-models based on demosaicing artifacts, Digit. Investig. 5(1/2), 49–59 (2008)

    Article  Google Scholar 

  20. J. Lukas, J. Fridrich, M. Goljan: Digital camera identification from sensor pattern noise, IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2006)

    Article  Google Scholar 

  21. Y. Sutcu, S. Bayram, H.T. Sencar, N. Memon: Improvements on sensor noise based source camera identification, Proc. IEEE ICME (2007)

    Google Scholar 

  22. M. Chen, J. Fridrich, M. Goljan: Digital imaging sensor identification (further study), Proc. SPIE 6505(1), 65050P (2007)

    Google Scholar 

  23. N. Khanna, A.K. Mikkilineni, G.T.-C. Chiu, J.P. Allebach, E.J. Delp: Forensic classification of imaging sensor types, Proc. SPIE 6505, 65050U (2007)

    Article  Google Scholar 

  24. N. Khanna, A.K. Mikkilineni, G.T.-C. Chiu, J.P. Allebach, E.J. Delp: Scanner identification using sensor pattern noise, Proc. SPIE 6505, 65050K (2007)

    Article  Google Scholar 

  25. H. Gou, A. Swaminathan, M. Wu: Robust scanner identification based on noise features, Proc. SPIE 6505, 65050S (2007)

    Article  Google Scholar 

  26. E. Dirik, H.T. Sencar, N. Memon: Source camera identification based on sensor dust characteristics, Proc. IEEE SAFE (2007)

    Google Scholar 

  27. A.C. Popescu, H. Farid: Exposing digital forgeries by detecting traces of re-sampling, IEEE Trans. Signal Process. 53(2), 758–767 (2005)

    Article  MathSciNet  Google Scholar 

  28. A.C. Popescu, H. Farid: Exposing digital forgeries in color filter array interpolated images, IEEE Trans. Signal Process. 53(10), 3948–3959 (2005)

    Article  MathSciNet  Google Scholar 

  29. T. Sikora: MPEG-1 and MPEG-2 digital video coding standards. In: Digital Consumer Electronics Handbook, ed. by R.K. Jurgen (McGraw-Hill, New York 1997)

    Google Scholar 

  30. A. Popescu, H. Farid: Statistical tools for digital forensics, 6th Int. Workshop on Information Hiding, Toronto, Canada (2004)

    Google Scholar 

  31. W. Wang, H. Farid: Exposing digital forgeries in video by detecting double MPEG compression, MM&Sec’06, 26–27 September 2006, Geneva, Switzerland (2006)

    Google Scholar 

  32. M.K. Johnson, H. Farid: Exposing digital forgeries by detecting inconsistencies in lighting, Proc. ACM Multimedia Security Workshop (2005)

    Google Scholar 

  33. M.K. Johnson, H. Farid: Exposing digital forgeries through chromatic aberration, Proc. ACM Multimedia Security Workshop (2006)

    Google Scholar 

  34. T.E. Boult, G. Wolberg: Correcting chromatic aberrations using image warping, Proc. IEEE Conference on Computer Vision and Pattern Recognition (1992) pp. 684–687

    Google Scholar 

  35. M. K. Johnson, H. Farid: Metric measurements on a plane from a single image, Technical Report TR2006-579, Dartmouth College, Computer Science (2006)

    Google Scholar 

  36. H. Farid: Detecting digital forgeries using bispectral analysis, Technical Report AIM-1657, Massachusetts Institute of Technology (1999)

    Google Scholar 

  37. Y. Sutcu, B. Coskun, H.T. Sencar, N. Memon: Tamper detection based on regularity of wavelet transform coefficients, 2007 IEEE Int. Conference on Image Processing (ICIP) (2007)

    Google Scholar 

  38. B. Sankur, S. Bayram, İ. Avcıbaş, N. Memon: Image manipulation detection, J. Electron. Imaging 15(4), 041102 (2006)

    Article  Google Scholar 

  39. S. Bayram, İ. Avcıbaş, B. Sankur, N. Memon: Image manipulation detection with binary similarity measures, EUSIPCO (2004)

    Google Scholar 

  40. İ. Avcıbaş, S. Bayram, N. Memon, M. Ramkumar, B. Sankur: A classifier design for detecting image manipulations, Proc. 2004 Int. Conference on Image Processing, Singapore (2004)

    Google Scholar 

  41. R. Duda, P. Hart: Pattern Classification and Scene Analysis (John Wiley and Sons, San Francisco 1973)

    MATH  Google Scholar 

  42. J. Fridrich, D. Soukal, J. Lukas: Detection of copy-move forgery in digital images, Proc. 2003 Digital Forensic Research Workshop (2003)

    Google Scholar 

  43. A.C. Popescu, H. Faridy: Exposing digital forgeries by detecting duplicated image regions, Technical Report TR2004-515, Dartmouth College, Computer Science (2004)

    Google Scholar 

  44. H. Farid: Exposing digital forgeries in scientific images, ACM MM&Sec’06, 26–27 September 2006, Geneva, Switzerland (2006)

    Google Scholar 

  45. T.-T. Ng, S.-F. Chang, M.-P. Tsui: Physics-motivated features for distinguishing photographic images and computer graphics, ACM MM’05, Singapore (2005)

    Google Scholar 

  46. A.E. Dirik, S. Bayram, H.T. Sencar, N. Memon: New features to identify computer generated images, 2007 IEEE Int. Conference on Image Processing (ICIP) (2007)

    Google Scholar 

  47. S. Dehnie, T. Sencar, N. Memon: Digital image forensics for identifying computer generated and digital camera images, 2006 IEEE Int. Conference on Image Processing (ICIP) (2006)

    Google Scholar 

  48. H. Farid, S. Lyu: Higher-order wavelet statistics and their application to digital forensics, 2003 Conference on Computer Vision and Pattern Recognition Workshop, Vol. 8 (2003)

    Google Scholar 

  49. N. Tian-Tsong, C. Shih-Fu, H. Yu-Feng, X. Lexing, T. Mao-Pei: Physics-motivated features for distinguishing photographic images and computer graphics, 2005 ACM Multimedia, Singapore (2005)

    Google Scholar 

  50. Y. Wang, P. Moulin: On discrimination between photorealistic and photographic images, 2006 IEEE Int. Conference on Acoustics, Speech and Signal Processing, IEEE, May 2006, Vol. 2 (2006) pp. II-161–II-164

    Google Scholar 

  51. S. Dehnie, H.T. Sencar, N. Memon: Identification of computer generated and digital camera images for digital image forensics, Proc. 2006 IEEE Int. Conference on Image Processing (ICIP) (2006)

    Google Scholar 

  52. T.-T. Ng, S.-F. Chang: A model for image splicing, 2004 IEEE Int. Conference on Image Processing (ICIP) (2004)

    Google Scholar 

  53. T.-T. Ng, S.-F. Chang, Q. Sun: Blind detection of photomontage using higher order statistics, 2004 IEEE Int. Conference on Circuits and Systems (ISCAS) (2004)

    Google Scholar 

  54. T.-T. Ng, S.-F. Chang: Blind detection of digital photomontage using higher order statistics, ADVENT Technical Report #201-2004-1, Columbia University (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lian, S., Zhang, Y. (2010). Multimedia Forensics for Detecting Forgeries. In: Stavroulakis, P., Stamp, M. (eds) Handbook of Information and Communication Security. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04117-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04117-4_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04116-7

  • Online ISBN: 978-3-642-04117-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics