Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5755))

Included in the following conference series:

  • 1509 Accesses

Abstract

In this paper, the algorithm of cluster analysis based on the ensemble of tree-like logical models (decision trees) is proposed. During the construction of the ensemble, the algorithm takes into account distances between logical statements describing clusters. Besides, we consider some properties of the Bayes model of classification. These properties are used at the motivation of information-probabilistic criterion of clustering quality. The results of experimental studies demonstrate the effectiveness of the suggested algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Strehl, A., Ghosh, J.: Clustering Ensembles - a Knowledge Reuse Framework for Combining Multiple Partitions. The Journal of Machine Learning Research 38, 583–617 (2002)

    Google Scholar 

  2. Topchy, A., Law, M., Jain, A., Fred, A.: Analysis of Consensus Partition in Cluster Ensemble. In: Fourth IEEE International Conference on Data Mining (ICDM 2004), pp. 225–232 (2004)

    Google Scholar 

  3. Hong, Y., Kwong, S.: To Combine Steady-state Genetic Algorithm and Ensemble Learning for Data Clustering. Pattern Recognition Letters 29(9), 1416–1423 (2008)

    Article  Google Scholar 

  4. Michalski, R., Stepp, R., Diday, E.: Automated Construction of Classifications: Conceptual Clustering versus Numerical Taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-5. 5, 396–409 (1983)

    Article  Google Scholar 

  5. Lbov, G.S., Berikov, V.B.: Recursive Method of Formation of the Recognition Decision Rule in the Class of Logical Functions. Pattern Recognition and Image Analysis 3(4), 428–431 (1993)

    Google Scholar 

  6. Lbov, G.S., Berikov, V.B.: Stability of Decision Functions in Problems of Pattern Recognition and Analysis of Heterogeneous Information (in Russian). Institute of mathematics, Novosibirsk (2005)

    Google Scholar 

  7. Kuncheva, L.: Combining Pattern Classifiers. In: Methods and Algorithms. John Wiley & Sons, Hoboken (2004)

    Google Scholar 

  8. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  9. Berikov, V.B.: Cluster Analysis by the Ensemble of Decision Trees. In: 9-th International Conference on Pattern Recognition and Image Analysis: New Information Technologies (PRIA-9-2008), Nizhni Novgorod, vol. 1, pp. 51–54 (2008)

    Google Scholar 

  10. Berikov, V., Lbov, G.: Bayesian model of recognition on a finite set of events. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 339–344. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. http://archive.ics.uci.edu/ml/

  12. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. NBS, Washington (1972)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berikov, V. (2009). Construction of the Ensemble of Logical Models in Cluster Analysis. In: Huang, DS., Jo, KH., Lee, HH., Kang, HJ., Bevilacqua, V. (eds) Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence. ICIC 2009. Lecture Notes in Computer Science(), vol 5755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04020-7_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04020-7_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04019-1

  • Online ISBN: 978-3-642-04020-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics