Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5755))

Included in the following conference series:

Abstract

A new manifold learning algorithm called locality preserving discriminant projections (LPDP) is proposed by adding between-class scatter matrix and within-class scatter matrix into locality preserving projections (LPP). LPDP can preserve locality and utilize label information in the projection. It is shown that the LPDP can successfully find the subspace which has better discrimination between different pattern classes. The subspace obtained by LPDP has more discriminant power than LPP, and is more suitable for recognition tasks. The proposed method was applied to USPS handwriting database and compared with LPP. Experimental results show the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  2. Saul, L.K., Roweis, S.T.: Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds. Journal of Machine Learning Research 4(2), 119–155 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Li, B., Zheng, C.H., Huang, D.S.: Locally Linear Discriminant Embedding: An Efficient Method for Face Recognition. Pattern Recognition 41(12), 3813–3821 (2008)

    Article  MATH  Google Scholar 

  4. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(5500), 2319–2324 (2000)

    Article  Google Scholar 

  5. Li, B., Huang, D.S., Wang, C.: Improving the Robustness of ISOMAP by De-noising. In: Proceedings of 2008 IEEE World Congress on Computational Intelligence (WCCI 2008), Hong Kong, pp. 266–270 (2008)

    Google Scholar 

  6. Belkin, M., Niyogi, P.: Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. In: Advances in Neural Information Processing Systems 14, vols. 1, 2, pp. 585–591 (2002)

    Google Scholar 

  7. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  8. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

  9. Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(2), 228–233 (2001)

    Article  Google Scholar 

  10. Williams, C.K.I.: On a Connection between Kernel PCA and Metric Multidimensional Scaling. Machine Learning 46(1-3), 11–19 (2002)

    Article  MATH  Google Scholar 

  11. He, X.F., Niyogi, P.: Locality Preserving Projections. Advances in Neural Information Processing Systems 16 16, 153–160 (2004)

    Google Scholar 

  12. He, X.F., Yan, S.C., Hu, Y.X., et al.: Face Recognition Using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3), 328–340 (2005)

    Article  Google Scholar 

  13. Liu, J., Cheri, S.C., Tan, X.Y., et al.: Comments on Efficient and Robust Feature Extraction by Maximum Margin Criterion. IEEE Transactions on Neural Networks 18(6), 1862–1864 (2007)

    Article  Google Scholar 

  14. Li, H.F., Jiang, T., Zhang, K.S.: Efficient and Robust Feature Extraction by Maximum Margin Criterion. IEEE Transactions on Neural Networks 17(1), 157–165 (2006)

    Article  Google Scholar 

  15. Yang, J., Zhang, D., Yang, J.Y., et al.: Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(4), 650–664 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gui, J., Wang, C., Zhu, L. (2009). Locality Preserving Discriminant Projections. In: Huang, DS., Jo, KH., Lee, HH., Kang, HJ., Bevilacqua, V. (eds) Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence. ICIC 2009. Lecture Notes in Computer Science(), vol 5755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04020-7_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04020-7_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04019-1

  • Online ISBN: 978-3-642-04020-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics