Summary
This short article describes two kernel algorithms of the regression function estimation. First of them is called HASKE and has its own heuristic of the h parameter evaluation. The second is a hybrid algorithm that connects SVM and the HASKE in such way that the definition of local neighborhood bases on the definition of the h–neighborhood from HASKE. Both of them are used as predictors for time series.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
WIG20 historical data, http://stooq.pl/q/d/?s=wig20
Gasser, T., Kneip, A., Kohler, W.: A Flexible and Fast Method for Automatic Smoothing. Annals of Statistics 86, 643–652 (1991)
Terrell, G.R.: The Maximal Smoothing Principle in Density Estimation. Annals of Statistics 85, 470–477 (1990)
Fan, J., Gijbels, I.: Variable Bandwidth and Local Linear Regression Smoothers. Annals of Statistics 20, 2008–2036 (1992)
Terrell, G.R., Scott, D.W.: Variable Kernel Density Estimation. Annals of Statistics 20, 1236–1265 (1992)
Turlach, B.A.: Bandwidth Selection in Kernel Density Estimation: A Review. Universite Catholique de Louvain, Technical report (1993)
Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proc. of the 5th annual workshop on Computational Learning Theory, Pittsburgh, pp. 144–152 (1992)
Fernandez, R.: Predicting Time Series with a Local Support Vector Regression Machine. In: Proc. of the ECCAI Advanced Course on Artificial Intelligence (1999)
Smola, A.J., Scholkopf, B.: A tutorial on support vector regression. Statistics and Computing 14, 199–222 (2004)
Cao, L.J., Tay, F.E.H.: Svm with adaptive parameters in financial time series forecasting. IEEE Trans. on Neural Networks 14, 1506–1518 (2003)
Kaastra, I., Boyd, M.: Designing a neural network for forecasting financial and economic time series. Neurocomputing 10, 215–236 (1996)
Friedman, J.H.: Multivariate Adaptive Regression Splines. Annals of Statistics 19, 1–141 (1991)
Hastie, T.J., Tibshirani, R.J.: Generalized Additive Models. Chapman and Hall, Boca Raton (1990)
Michalak, M., Sta̧por, K.: Estymacja ja̧drowa w predykcji szeregów czasowych. Studia Informatica 29 3A (78), 71–90 (2008)
Michalak, M.: Możliwości poprawy jakości usług w transporcie miejskim poprzez monitoring natȩżenia potoków pasażerskich. ITS dla Śla̧ska, Katowice (2008)
Sikora, M., Kozielski, M., Michalak, M.: Innowacyjne narzȩdzia informatyczne analizy danych. Wydział Transportu, Gliwice (2008)
de Boor, C.: A practical guide to splines. Springer, Heidelberg (2001)
Gajek, L., Kałuszka, M.: Wnioskowanie statystyczne, WNT, Warszawa (2000)
Koronacki, J., Ćwik, J.: Statystyczne systemy ucza̧ce siȩ. WNT, Warszawa (2005)
Kulczycki, P.: Estymatory ja̧drowe w analizie systemowej. WNT, Warszawa (2005)
Box, G.E.P., Jenkins, G.M.: Analiza szeregów czasowych. PWN, Warszawa (1983)
Gasser, T., Muller, H.G.: Estimating Regression Function and Their Derivatives by the Kernel Method. Scandinavian Journal of Statistics 11, 171–185 (1984)
Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall, Boca Raton (1986)
Epanechnikov, V.A.: Nonparametric Estimation of a Multivariate Probability Density. Theory of Probability and Its Applications 14, 153–158 (1969)
Nadaraya, E.A.: On estimating regression. Theory of Probability and Its Applications 9, 141–142 (1964)
Scholkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)
Taylor, J.S., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Vapnik, V.N.: Statistical Learning Theory. Wiley, Chichester (1988)
Watson, G.S.: Smooth Regression Analysis. Sankhya - The Indian Journal of Statistics 26, 359–372 (1964)
Cleveland, W.S., Devlin, S.J.: Locally Weighted Regression. Jour. of the Am. Stat. Ass. 83, 596–610 (1988)
Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman and Hall, Boca Raton (1995)
Smola, A.J.: Regression Estimation with Support Vector Learning Machines. Technische Universität München (1996)
Muller, K.R., Smola, A.J., Ratsch, G., Scholkopf, B., Kohlmorgen, J., Vapnik, V.: Predicting Time Series with Support Vector Machines. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 999–1004. Springer, Heidelberg (1997)
Huang, K., Yang, H., King, I., Lyu, M.: Local svr for Financial Time Series Prediction. In: Proc. of IJCNN 2006, pp. 1622–1627 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Michalak, M. (2009). Time Series Prediction Using New Adaptive Kernel Estimators. In: Kurzynski, M., Wozniak, M. (eds) Computer Recognition Systems 3. Advances in Intelligent and Soft Computing, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93905-4_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-93905-4_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-93904-7
Online ISBN: 978-3-540-93905-4
eBook Packages: EngineeringEngineering (R0)