Abstract
We introduce a new approach for tracking-based segmentation of 3D tubular structures. The approach is based on a novel combination of a 3D cylindrical intensity model and particle filter tracking. In comparison to earlier work we utilize a 3D intensity model as the measurement model of the particle filter, thus a more realistic 3D appearance model is used that directly represents the image intensities of 3D tubular structures within semi-global regions-of-interest. We have successfully applied our approach using 3D synthetic images and real 3D MRA image data of the human pelvis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Frangi AF, Niessen WJ, Vincken KL, et al. Multiscale vessel enhancement filtering. Proc MICCAI. 1998; p. 130–137.
Wink O, Niessen WJ, Viergever MA. Multiscale vessel tracking. IEEE Trans Med Imaging. 2004;23(l):130–133.
Volkau I, Ng TT, Marchenko Y, et al. On geometric modeling of the human intracranial venous system. IEEE Trans Med Imaging. 2008;27(6):745–51.
Noordmans HJ, Smeulders AWM. High accuracy tracking of 2D/3D curved line structures by consecutive cross-section matching. Pattern Recogn Lett. 1998;19(1):97–111.
Wörz S, Rohr K. Segmentation and quantification of human vessels using a 3-D cylindrical intensity model. IEEE Trans Image Process. 2007;16(8): 1994–2004.
Guerrero J, Salcudean SE, McEwen JA, et al. Real-time vessel segmentation and tracking for ultrasound imaging applications. IEEE Trans Medical Imaging. 2007;26(8):1079–1090.
Florin C, Paragios N, Williams J. Globally optimal active contours, sequential Monte Carlo and on-line learning for vessel segmentation. Proc ECCV. 2006; p. 476–489.
Schaap M, Manniesing R, Smal I, et al. Bayesian tracking of tubular structures and its application to carotid arteries in CTA. Proc MICCAI. 2007; p. 562–570.
Lesage D, Angelini ED, Bloch I, et al. Medial-based bayesian tracking for vascular segmentation: Application to coronary arteries in 3D CT angiography. Proc IEEE ISBI. 2008; p. 268–271.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wörz, S., Godinez, W.J., Rohr, K. (2009). Probabilistic Tracking and Model-Based Segmentation of 3D Tubular Structures. In: Meinzer, HP., Deserno, T.M., Handels, H., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2009. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93860-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-93860-6_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-93859-0
Online ISBN: 978-3-540-93860-6
eBook Packages: Computer Science and Engineering (German Language)