Nothing Special   »   [go: up one dir, main page]

Skip to main content

Probabilistic Tracking and Model-Based Segmentation of 3D Tubular Structures

  • Conference paper
Bildverarbeitung für die Medizin 2009

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

We introduce a new approach for tracking-based segmentation of 3D tubular structures. The approach is based on a novel combination of a 3D cylindrical intensity model and particle filter tracking. In comparison to earlier work we utilize a 3D intensity model as the measurement model of the particle filter, thus a more realistic 3D appearance model is used that directly represents the image intensities of 3D tubular structures within semi-global regions-of-interest. We have successfully applied our approach using 3D synthetic images and real 3D MRA image data of the human pelvis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Frangi AF, Niessen WJ, Vincken KL, et al. Multiscale vessel enhancement filtering. Proc MICCAI. 1998; p. 130–137.

    Google Scholar 

  2. Wink O, Niessen WJ, Viergever MA. Multiscale vessel tracking. IEEE Trans Med Imaging. 2004;23(l):130–133.

    Article  Google Scholar 

  3. Volkau I, Ng TT, Marchenko Y, et al. On geometric modeling of the human intracranial venous system. IEEE Trans Med Imaging. 2008;27(6):745–51.

    Article  Google Scholar 

  4. Noordmans HJ, Smeulders AWM. High accuracy tracking of 2D/3D curved line structures by consecutive cross-section matching. Pattern Recogn Lett. 1998;19(1):97–111.

    Article  MATH  Google Scholar 

  5. Wörz S, Rohr K. Segmentation and quantification of human vessels using a 3-D cylindrical intensity model. IEEE Trans Image Process. 2007;16(8): 1994–2004.

    Article  MathSciNet  Google Scholar 

  6. Guerrero J, Salcudean SE, McEwen JA, et al. Real-time vessel segmentation and tracking for ultrasound imaging applications. IEEE Trans Medical Imaging. 2007;26(8):1079–1090.

    Article  Google Scholar 

  7. Florin C, Paragios N, Williams J. Globally optimal active contours, sequential Monte Carlo and on-line learning for vessel segmentation. Proc ECCV. 2006; p. 476–489.

    Google Scholar 

  8. Schaap M, Manniesing R, Smal I, et al. Bayesian tracking of tubular structures and its application to carotid arteries in CTA. Proc MICCAI. 2007; p. 562–570.

    Google Scholar 

  9. Lesage D, Angelini ED, Bloch I, et al. Medial-based bayesian tracking for vascular segmentation: Application to coronary arteries in 3D CT angiography. Proc IEEE ISBI. 2008; p. 268–271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wörz, S., Godinez, W.J., Rohr, K. (2009). Probabilistic Tracking and Model-Based Segmentation of 3D Tubular Structures. In: Meinzer, HP., Deserno, T.M., Handels, H., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2009. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93860-6_9

Download citation

Publish with us

Policies and ethics