Abstract
The discrimination of benign and malignant types of mammographic masses is a major challenge for radiologists. The classic eigenfaces method was recently adapted for the detection of masses in mammograms. In the work at hand we investigate if this method is also suited for the problem of distinguishing benign and malignant types of this mammographie lesion. We furthermore evaluate two extended versions of the eigenfaces approach (fisherface and eigenfeature regularization extraction) and compare the performance of all three methods on a public mammography database. Our results indicate that all three methods can be applied to discriminate benign and malignant types of mammographie masses. However, our ROC analysis shows that the methods still require combination with other features to allow for reliable classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
American College of Radiology. Breast Imaging Reporting and Data System BI-RADS Atlas; 2006.
Oliver A, Marti J, Bosch A, et al. A new approach to the classification of mammographic masses and normal breast tissue. In: The 18th International Conference on Pattern Recognition (ICPR’06); 2006. p. 707–710.
Shi J, Sahiner B, Chan HP, et al. Characterization of mammographic masses based on level set segmentation with new image features and patient information. Med Phys. 2008;35(l):280–290.
Varela C, Timp S, Karssemeijer N. Use of border information in the classification of mammographie masses. Phys Med Biol. 2006;51(2):425–441. Available from: http://dx.doi.Org/10.1088/0031-9155/51/2/016.
Drukker K, Horsch K, Giger ML. Multimodality computerized diagnosis of breast lesions using mammography and sonography. Acad Radiol. 2005;12(8):970–979. Available from: http://dx.doi.Org/10.1016/j.acra.2005.04.014.
Timp S, Karssemeijer N. A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography. Med Phys. 2008;30(3):383–394.
Heath M, Bowyer K, Kopans D, et al. The digital database for screening mammography. Procs Int Workshop on Digital Mammography. 2001; p. 212–218.
Kessler W. Multivariante Datenanalyse: Für die Pharma-, Bio-und Prozessanalyse. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; 2007.
Turk M, Pentland A. Eigenfaces for Recognition. J Cognitive Neuroscience. 1991;3(l):71–86.
Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans PAMI. 1997;19(7):711–720.
Jiang X, Mandai B, Kot A. Eigenfeature regularization and extraction in face recognition. IEEE Trans PAMI. 2008;30(3):383–394.
Metz CE, Herman BA, Shen JH. Maximum-likelihood estimation of ROC curves from continuously-distributed data. Stat Med. 1998;17:1033–1053.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
von der Heidt, SR., Elter, M., Wittenberg, T., Paulus, D. (2009). Model-Based Characterization of Mammographic Masses. In: Meinzer, HP., Deserno, T.M., Handels, H., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2009. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93860-6_58
Download citation
DOI: https://doi.org/10.1007/978-3-540-93860-6_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-93859-0
Online ISBN: 978-3-540-93860-6
eBook Packages: Computer Science and Engineering (German Language)