Nothing Special   »   [go: up one dir, main page]

Skip to main content

Model-Based Characterization of Mammographic Masses

  • Conference paper
Bildverarbeitung für die Medizin 2009

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

The discrimination of benign and malignant types of mammographic masses is a major challenge for radiologists. The classic eigenfaces method was recently adapted for the detection of masses in mammograms. In the work at hand we investigate if this method is also suited for the problem of distinguishing benign and malignant types of this mammographie lesion. We furthermore evaluate two extended versions of the eigenfaces approach (fisherface and eigenfeature regularization extraction) and compare the performance of all three methods on a public mammography database. Our results indicate that all three methods can be applied to discriminate benign and malignant types of mammographie masses. However, our ROC analysis shows that the methods still require combination with other features to allow for reliable classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. American College of Radiology. Breast Imaging Reporting and Data System BI-RADS Atlas; 2006.

    Google Scholar 

  2. Oliver A, Marti J, Bosch A, et al. A new approach to the classification of mammographic masses and normal breast tissue. In: The 18th International Conference on Pattern Recognition (ICPR’06); 2006. p. 707–710.

    Google Scholar 

  3. Shi J, Sahiner B, Chan HP, et al. Characterization of mammographic masses based on level set segmentation with new image features and patient information. Med Phys. 2008;35(l):280–290.

    Article  Google Scholar 

  4. Varela C, Timp S, Karssemeijer N. Use of border information in the classification of mammographie masses. Phys Med Biol. 2006;51(2):425–441. Available from: http://dx.doi.Org/10.1088/0031-9155/51/2/016.

    Article  Google Scholar 

  5. Drukker K, Horsch K, Giger ML. Multimodality computerized diagnosis of breast lesions using mammography and sonography. Acad Radiol. 2005;12(8):970–979. Available from: http://dx.doi.Org/10.1016/j.acra.2005.04.014.

    Article  Google Scholar 

  6. Timp S, Karssemeijer N. A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography. Med Phys. 2008;30(3):383–394.

    Google Scholar 

  7. Heath M, Bowyer K, Kopans D, et al. The digital database for screening mammography. Procs Int Workshop on Digital Mammography. 2001; p. 212–218.

    Google Scholar 

  8. Kessler W. Multivariante Datenanalyse: Für die Pharma-, Bio-und Prozessanalyse. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; 2007.

    Google Scholar 

  9. Turk M, Pentland A. Eigenfaces for Recognition. J Cognitive Neuroscience. 1991;3(l):71–86.

    Article  Google Scholar 

  10. Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans PAMI. 1997;19(7):711–720.

    Google Scholar 

  11. Jiang X, Mandai B, Kot A. Eigenfeature regularization and extraction in face recognition. IEEE Trans PAMI. 2008;30(3):383–394.

    Google Scholar 

  12. Metz CE, Herman BA, Shen JH. Maximum-likelihood estimation of ROC curves from continuously-distributed data. Stat Med. 1998;17:1033–1053.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

von der Heidt, SR., Elter, M., Wittenberg, T., Paulus, D. (2009). Model-Based Characterization of Mammographic Masses. In: Meinzer, HP., Deserno, T.M., Handels, H., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2009. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93860-6_58

Download citation

Publish with us

Policies and ethics