Abstract
We propose simultaneous low rank approximation of tensors (SLRAT) for the dimensionality reduction of tensors and modify it to the robust one, i.e., the robust SLRAT. For both the SLRAT and the robust SLRAT, we propose iterative algorithms for solving them. It is experimentally shown that the robust SLRAT achieves lower reconstruction error than the SLRAT when a dataset contains noise data. We also propose a method for classifying sets of tensors and call it the subspace matching, where both training data and testing data are represented by their subspaces, and each testing datum is classified on the basis of the similarity between subspaces. It is experimentally verified that the robust SLRAT achieves higher recognition rate than the SLRAT when the testing data contain noise data.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Yang, J., Zhang, D., Frangi, A.F., Yang, J.: Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26, 131–137 (2004)
Wang, L., Wang, X., Zhang, X., Feng, J.: The equivalence of two-dimensional PCA to line-based PCA. Pattern Recognition Letters 26, 57–60 (2005)
Gao, Q.: Is two-dimensional PCA equivalent to a special case of modular PCA? Pattern Recognition Letters 28, 1250–1251 (2007)
Zhang, D., Chen, S., Liu, J.: Representing image matrices: Eigenimages versus eigenvectors. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 659–664. Springer, Heidelberg (2005)
Ye, J.: Generalized low rank approximations of matrices. Machine Learning 61, 167–191 (2005)
Inoue, K., Urahama, K.: Equivalence of non-iterative algorithms for simultaneous low rank approximations of matrices. In: IEEE Proc. CVPR, pp. 154–159 (2006)
Ding, C., Huang, H., Luo, D.: Tensor Reduction Error Analysis – Applications to Video Compression and Classification. In: Proc. CVPR (2008)
Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: MPCA: Multilinear principal component analysis of tensor objects. IEEE Trans. Pattern Anal. Mach. Intell. 19, 18–39 (2008)
Huang, H., Ding, C.: Robust Tensor Factorization Using R1-Norm. In: Proc. CVPR (2008)
De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)
De Lathauwer, L., De Moor, B., Vandewalle, J.:On the best rank-1 and rank-(R 1,R 2,...,R N ) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)
Bader, B.W., Kolda, T.G.: Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans. Math. Software 32, 635–653 (2006)
Huber, P.J.: Robust Statistics. Wiley, Chichester (1981)
Ortega, J.M., Rheinboldt, W.G.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, NY (1970)
Lütkepohl, H.: Handbook of Matrices. John Wiley & Sons, Chichester (1996)
Munkres, J.: Algorithms for the Assignment and Transportation Problems. Journal of the Society of Industrial and Applied Mathematics 5, 32–38 (1957)
Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face identification. In: Proc. 2nd IEEE Workshop on Appl. Comput. Vision (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Inoue, K., Hara, K., Urahama, K. (2009). Robust Simultaneous Low Rank Approximation of Tensors. In: Wada, T., Huang, F., Lin, S. (eds) Advances in Image and Video Technology. PSIVT 2009. Lecture Notes in Computer Science, vol 5414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92957-4_50
Download citation
DOI: https://doi.org/10.1007/978-3-540-92957-4_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92956-7
Online ISBN: 978-3-540-92957-4
eBook Packages: Computer ScienceComputer Science (R0)