Abstract
In this paper, we present a person independent 3D system for judging the correctness of a sign. The system is camera-based, using computer vision techniques to track the hand and extract features. 3D co-ordinates of the hands and other features are calculated from stereo images. The features are then modeled statistically and automatic feature selection is used to build the classifiers. Each classifier is meant to judge the correctness of one sign. We tested our approach using a 120-sign vocabulary and 75 different signers. Overall, a true positive rate of 96.5% at a false positive rate of 3.5% is achieved. The system’s performance in a real-world setting largely agreed with human expert judgement.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schermer, G., Fortgens, C., Harder, R., De Nobel, E.: De Nederlandse Gebarentaal. Van Tricht, Twello (1991)
Spaai, G.W.G., Fortgens, C., Elzenaar, M., Wenners, E., Lichtenauer, J.F., Hendriks, E.A., de Ridder, H., Arendsen, J., Ten Holt, G.A.: A computerprogram for teaching active and passive sign language vocabulary to severely hearing-impaired and deaf children (in Dutch). Logopedie en Foniatrie 80, 42–50 (2004)
Grobel, K., Assam, M.: Isolated sign language recognition using hidden markov models. In: IEEE Int. Conf. on Systems, Man and Cybernetics, pp. 162–167. IEEE, Los Alamitos (1997)
Liang, R.H., Ouhyoung, M.: A real-time continuous gesture recognition system for sign language. In: 3rd Int. Conf. on Face & Gesture Recognition, pp. 558–565. IEEE Computer Society, Los Alamitos (1998)
Starner, T., Weaver, J., Pentland, A.: Real-time American sign language recognition using desk and wearable computer based video. IEEE TPAMI 20, 1271–1375 (1998)
Waldron, M., Kim, S.: Isolated ASL sign recognition system for deaf persons. IEEE Transactions on Rehabilitation Engineering 3, 261–271 (1995)
Kadous, W.: Machine recognition of auslan signs using powergloves: Towards large-lexicon recognition of sign language. In: Workshop on the Integration of Gesture in Language and Speech, pp. 165–174 (1996)
Holden, E.J., Owens, R., Roy, G.: Adaptive fuzzy expert system for sign recognition. In: Int. Conf. on Signal and Image Processing, pp. 141–146 (1999)
Zieren, J., Kraiss, K.F.: Non-intrusive sign language recognition for human-computer interaction. In: IFAC-HMS Symposium (2004)
Bauer, B., Kraiss, K.F.: Towards an automatic sign language recognition system using subunits. In: Wachsmuth, I., Sowa, T. (eds.) GW 2001. LNCS, vol. 2298, pp. 123–173. Springer, Heidelberg (2002)
Vogler, C., Metaxas, D.: Handshapes and movements: Multiple-channel American sign language recognition. In: Camurri, A., Volpe, G. (eds.) GW 2003. LNCS, vol. 2915, pp. 247–258. Springer, Heidelberg (2004)
Bowden, R., Windridge, D., Kadir, T., Zisserman, A., Brady, M.: A linguistic feature vector for the visual interpretation of sign language. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 390–401. Springer, Heidelberg (2004)
Chen, Y., Gao, W., Fang, G., Yang, C., Wang, Z.: Cslds: Chinese sign language dialog system. In: IEEE Int. Workshop on Analysis and Modeling of Faces and Gestures, pp. 236–237. IEEE, Los Alamitos (2003)
von Agris, U., Schneider, D., Zieren, J., Kraiss, K.F.: Rapid signer adaptation for isolated sign language recognition. In: Conf. on Comp. Vision and Pattern Recognition Workshop, p. 159. IEEE Computer Society, Los Alamitos (2006)
Wang, C., Chen, C., Gao, W.: Generating data for signer adaptation. In: Int. Workshop on Gesture and Sign Language based Human-Computer Interaction (2007)
von Agris, U., Kraiss, K.F.: Towards a video corpus for signer-independent continuous sign language recognition. In: Int. Workshop on Gesture and Sign Language based Human-Computer Interaction (2007)
Lichtenauer, J., Hendriks, E., Reinders, M.: A self-calibrating chrominance model applied to skin color detection. In: Int. Conf. on Computer Vision Theory and Applications (2007)
Bahlmann, C., Burkhardt, H.: The writer independent online handwriting recognition system frog on hand and cluster generative statistical dynamic time warping. IEEE TPAMI 26, 299–310 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lichtenauer, J.F., ten Holt, G.A., Reinders, M.J.T., Hendriks, E.A. (2009). Person-Independent 3D Sign Language Recognition. In: Sales Dias, M., Gibet, S., Wanderley, M.M., Bastos, R. (eds) Gesture-Based Human-Computer Interaction and Simulation. GW 2007. Lecture Notes in Computer Science(), vol 5085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92865-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-92865-2_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92864-5
Online ISBN: 978-3-540-92865-2
eBook Packages: Computer ScienceComputer Science (R0)