Nothing Special   »   [go: up one dir, main page]

Skip to main content

Person-Independent 3D Sign Language Recognition

  • Conference paper
Gesture-Based Human-Computer Interaction and Simulation (GW 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5085))

Included in the following conference series:

Abstract

In this paper, we present a person independent 3D system for judging the correctness of a sign. The system is camera-based, using computer vision techniques to track the hand and extract features. 3D co-ordinates of the hands and other features are calculated from stereo images. The features are then modeled statistically and automatic feature selection is used to build the classifiers. Each classifier is meant to judge the correctness of one sign. We tested our approach using a 120-sign vocabulary and 75 different signers. Overall, a true positive rate of 96.5% at a false positive rate of 3.5% is achieved. The system’s performance in a real-world setting largely agreed with human expert judgement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schermer, G., Fortgens, C., Harder, R., De Nobel, E.: De Nederlandse Gebarentaal. Van Tricht, Twello (1991)

    Google Scholar 

  2. Spaai, G.W.G., Fortgens, C., Elzenaar, M., Wenners, E., Lichtenauer, J.F., Hendriks, E.A., de Ridder, H., Arendsen, J., Ten Holt, G.A.: A computerprogram for teaching active and passive sign language vocabulary to severely hearing-impaired and deaf children (in Dutch). Logopedie en Foniatrie 80, 42–50 (2004)

    Google Scholar 

  3. Grobel, K., Assam, M.: Isolated sign language recognition using hidden markov models. In: IEEE Int. Conf. on Systems, Man and Cybernetics, pp. 162–167. IEEE, Los Alamitos (1997)

    Google Scholar 

  4. Liang, R.H., Ouhyoung, M.: A real-time continuous gesture recognition system for sign language. In: 3rd Int. Conf. on Face & Gesture Recognition, pp. 558–565. IEEE Computer Society, Los Alamitos (1998)

    Google Scholar 

  5. Starner, T., Weaver, J., Pentland, A.: Real-time American sign language recognition using desk and wearable computer based video. IEEE TPAMI 20, 1271–1375 (1998)

    Article  Google Scholar 

  6. Waldron, M., Kim, S.: Isolated ASL sign recognition system for deaf persons. IEEE Transactions on Rehabilitation Engineering 3, 261–271 (1995)

    Article  Google Scholar 

  7. Kadous, W.: Machine recognition of auslan signs using powergloves: Towards large-lexicon recognition of sign language. In: Workshop on the Integration of Gesture in Language and Speech, pp. 165–174 (1996)

    Google Scholar 

  8. Holden, E.J., Owens, R., Roy, G.: Adaptive fuzzy expert system for sign recognition. In: Int. Conf. on Signal and Image Processing, pp. 141–146 (1999)

    Google Scholar 

  9. Zieren, J., Kraiss, K.F.: Non-intrusive sign language recognition for human-computer interaction. In: IFAC-HMS Symposium (2004)

    Google Scholar 

  10. Bauer, B., Kraiss, K.F.: Towards an automatic sign language recognition system using subunits. In: Wachsmuth, I., Sowa, T. (eds.) GW 2001. LNCS, vol. 2298, pp. 123–173. Springer, Heidelberg (2002)

    Google Scholar 

  11. Vogler, C., Metaxas, D.: Handshapes and movements: Multiple-channel American sign language recognition. In: Camurri, A., Volpe, G. (eds.) GW 2003. LNCS, vol. 2915, pp. 247–258. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Bowden, R., Windridge, D., Kadir, T., Zisserman, A., Brady, M.: A linguistic feature vector for the visual interpretation of sign language. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 390–401. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Chen, Y., Gao, W., Fang, G., Yang, C., Wang, Z.: Cslds: Chinese sign language dialog system. In: IEEE Int. Workshop on Analysis and Modeling of Faces and Gestures, pp. 236–237. IEEE, Los Alamitos (2003)

    Google Scholar 

  14. von Agris, U., Schneider, D., Zieren, J., Kraiss, K.F.: Rapid signer adaptation for isolated sign language recognition. In: Conf. on Comp. Vision and Pattern Recognition Workshop, p. 159. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  15. Wang, C., Chen, C., Gao, W.: Generating data for signer adaptation. In: Int. Workshop on Gesture and Sign Language based Human-Computer Interaction (2007)

    Google Scholar 

  16. von Agris, U., Kraiss, K.F.: Towards a video corpus for signer-independent continuous sign language recognition. In: Int. Workshop on Gesture and Sign Language based Human-Computer Interaction (2007)

    Google Scholar 

  17. Lichtenauer, J., Hendriks, E., Reinders, M.: A self-calibrating chrominance model applied to skin color detection. In: Int. Conf. on Computer Vision Theory and Applications (2007)

    Google Scholar 

  18. Bahlmann, C., Burkhardt, H.: The writer independent online handwriting recognition system frog on hand and cluster generative statistical dynamic time warping. IEEE TPAMI 26, 299–310 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lichtenauer, J.F., ten Holt, G.A., Reinders, M.J.T., Hendriks, E.A. (2009). Person-Independent 3D Sign Language Recognition. In: Sales Dias, M., Gibet, S., Wanderley, M.M., Bastos, R. (eds) Gesture-Based Human-Computer Interaction and Simulation. GW 2007. Lecture Notes in Computer Science(), vol 5085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92865-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92865-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92864-5

  • Online ISBN: 978-3-540-92865-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics