Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evaluation of Sparse LU Factorization and Triangular Solution on Multicore Platforms

  • Conference paper
High Performance Computing for Computational Science - VECPAR 2008 (VECPAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5336))

Abstract

The Chip Multiprocessor (CMP) will be the basic building block for computer systems ranging from laptops to supercomputers. New software developments at all levels are needed to fully utilize these systems. In this work, we evaluate performance of different high-performance sparse LU factorization and triangular solution algorithms on several representative multicore machines. We include both pthreads and MPI implementations in this study, and found that the pthreads implementation consistently delivers good performance and a left-looking algorithm is usually superior.

This research was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. CrayPatCray Performance Analysis Tools, http://docs.cray.com/books/S-2376-41/S-2376-41.pdf

  2. Davis, T.A.: University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/matrices

  3. Demmel, J.W., Gilbert, J.R., Li, X.S.: An asynchronous parallel supernodal algorithm for sparse gaussian elimination. SIAM J. Matrix Analysis and Applications 20(4), 915–952 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Demmel, J.W., Gilbert, J.R., Li, X.S.: SuperLU Users Guide. Technical Report LBNL-44289, Lawrence Berkeley National Laboratory (September 1999)(Last update: September 2007), http://crd.lbl.gov/~xiaoye/SuperLU/

  5. Duff, I.S., Koster, J.: On algorithms for permuting large entries to the diagonal of a sparse matrix. SIAM J. Matrix Analysis and Applications 22(4), 973–996 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, X.S.: Sparse Gaussian elimination on high performance computers. Technical Report UCB//CSD-96-919, Computer Science Division, U.C. Berkeley, Ph.D dissertation (September 1996)

    Google Scholar 

  7. Li, X.S.: An overview of SuperLU: Algorithms, implementation, and user interface. ACM Trans. Mathematical Software 31(3), 302–325 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, X.S., Demmel, J.W.: SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems. ACM Trans. Mathematical Software 29(2), 110–140 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. MPICH - A Portable Implementation of MPI, http://www-unix.mcs.anl.gov/mpi/mpich1/

  10. PAPI - Performance Application Programming Interface, http://icl.cs.utk.edu/papi/

  11. Phillips, S.: Victoriafalls: Scaling highly-threaded processor cores. In: HOT CHIPS 19: A Symposium on High Performance Chips, Stanford, California, August 19-21 (2007)

    Google Scholar 

  12. Shalf, J.: Private communications

    Google Scholar 

  13. Williams, S.: Private communications

    Google Scholar 

  14. Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimization of sparse matrix-vector multiplication on emerging multicore platforms. In: Supercomputing (SC), Reno, California, November 10-16 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, X.S. (2008). Evaluation of Sparse LU Factorization and Triangular Solution on Multicore Platforms. In: Palma, J.M.L.M., Amestoy, P.R., Daydé, M., Mattoso, M., Lopes, J.C. (eds) High Performance Computing for Computational Science - VECPAR 2008. VECPAR 2008. Lecture Notes in Computer Science, vol 5336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92859-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92859-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92858-4

  • Online ISBN: 978-3-540-92859-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics