Abstract
This paper surveys complexity and approximability results for the Maximum Solution (Max Sol) problem. Max Sol is an optimisation variant of the constraint satisfaction problem. Many important and well-known combinatorial optimisation problems are instances of Max Sol: for example, Max Sol restricted to the domain {0,1} is exactly the Max Ones problem (which, in turn, captures problems such as Independent Set and 0/1 Integer Programming). By using this relationship, many different problems in logic, graph theory, integer programming, and algebra can be given a uniform treatment. This opens up for new ways of analysing and solving combinatorial optimisation problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ageev, A.: On finding critical independent and vertex sets. SIAM J. Discrete Math. 7(2), 293–295 (1994)
Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti Spaccamela, A., Protasi, M.: Complexity and approximation: Combinatorial optimization problems and their approximability properties. Springer, Heidelberg (1999)
Baker, B.: Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM 41, 153–180 (1994)
Bodirsky, M., Nešetřil, J.: Constraint satisfaction with countable homogeneous templates. Journal of Logic and Computation 16(3), 359–373 (2006)
Bulatov, A.: A graph of a relational structure and constraint satisfaction problems. In: Proceedings of the 19th IEEE Symposium on Logic in Computer Science (LICS 2004), pp. 448–457 (2004)
Bulatov, A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. Journal of the ACM 53(1), 66–120 (2006)
Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the complexity of constraints using finite algebras. SIAM J. Comput. 34(3), 720–742 (2005)
Bulatov, A., Krokhin, A., Jeavons, P.: The complexity of maximal constraint languages. In: Proceedings of the 33rd ACM Symposium on Theory of Computing (STOC 2001), pp. 667–674 (2001)
Cohen, D., Cooper, M., Jeavons, P.: An algebraic characterisation of complexity for valued constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 107–121. Springer, Heidelberg (2006)
Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: The complexity of soft constraint satisfaction. Artificial Intelligence 170(11), 983–1016 (2006)
Creignou, N., Hermann, M., Krokhin, A., Salzer, G.: Complexity of clausal constraints over chains. Theory Comput. Syst. 42(2), 239–255 (2008)
Creignou, N., Khanna, S., Sudan, M.: Complexity classifications of Boolean constraint satisfaction problems. SIAM, Philadelphia (2001)
Crescenzi, P., Silvestri, R., Trevisan, L.: On weighted vs unweighted versions of combinatorial optimization problems. Inf. Comput. 167(1), 10–26 (2001)
Dalmau, V.: A new tractable class of constraint satisfaction problems. Annals of Mathematics and Artificial Intelligence 44(1-2), 61–85 (2005)
Feder, T., Hell, P., Huang, J.: List homomorphisms and circular arc graphs. Combinatorica 19, 487–505 (1999)
Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput. 28(1), 57–104 (1999)
Gil, À., Hermann, M., Salzer, G., Zanuttini, B.: Efficient algorithms for constraint description problems over finite totally ordered domains. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS, vol. 3097, pp. 244–258. Springer, Heidelberg (2004)
Goldmann, M., Russell, A.: The complexity of solving equations over finite groups. In: IEEE Conference on Computational Complexity, pp. 80–86 (1999)
Gutin, G., Hell, P., Rafiey, A., Yeo, A.: A dichotomy for minimum cost graph homomorphisms. European J. Combin. 29(4), 900–911 (2008)
Gutin, G., Rafiey, A., Yeo, A.: Minimum cost and list homomorphisms to semicomplete digraphs. Discrete Applied Mathematics 154(6), 890–897 (2006)
Gutin, G., Rafiey, A., Yeo, A., Tso, M.: Level of repair analysis and minimum cost homomorphisms of graphs. Discrete Applied Mathematics 154(6), 881–889 (2006)
Hell, P., Nešetřil, J.: On the complexity of H-colouring. Journal of Combinatorial Theory B 48, 92–110 (1990)
Hähnle, R.: Complexity of many-valued logics. In: Proceedings of the 31st IEEE International Symposium on Multiple-valued Logic (ISMVL 2001), pp. 137–148 (2001)
Hochbaum, D., Megiddo, N., Naor, J., Tamir, A.: Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality. Mathematical Programming 62, 69–84 (1993)
Hochbaum, D., Naor, J.: Simple and fast algorithms for linear and integer programs with two variables per inequality. SIAM J. Comput. 23(6), 1179–1192 (1994)
Håstad, J.: Some optimal inapproximability results. Journal of the ACM 48(4), 798–859 (2001)
Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. Journal of the ACM 48(4), 761–777 (2001)
Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Journal of the ACM 44, 527–548 (1997)
Jeavons, P., Cooper, M.: Tractable constraints on ordered domains. Artificial Intelligence 79, 327–339 (1996)
Jonsson, P.: Boolean constraint satisfaction: complexity results for optimization problems with arbitrary weights. Theoretical Computer Science 244(1-2), 189–203 (2000)
Jonsson, P., Klasson, M., Krokhin, A.: The approximability of three-valued Max CSP. SIAM J. Comput. 35(3), 1329–1349 (2006)
Jonsson, P., Kuivinen, F., Nordh, G.: Max Ones generalised to larger domains. SIAM J. Comput. 38(1), 329–365 (2008)
Jonsson, P., Nordh, G.: Generalised integer programming based on logically defined relations. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 549–560. Springer, Heidelberg (2006)
Jonsson, P., Nordh, G., Thapper, J.: The maximum solution problem on graphs. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 228–239. Springer, Heidelberg (2007)
Khanna, S., Sudan, M., Trevisan, L., Williamson, D.: The approximability of constraint satisfaction problems. SIAM J. Comput. 30(6), 1863–1920 (2001)
Kuivinen, F.: Tight approximability results for the maximum solution equation problem over Z p . In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 628–639. Springer, Heidelberg (2005)
Pöschel, R., Kaluznin, L.: Funktionen- und Relationenalgebren. DVW, Berlin (1979)
Rosenberg, I.: Minimal clones I: the five types. In: Szabó, L., Szendrei, Á. (eds.) Lectures in Universal Algebra. North-Holland, Amsterdam (1986)
Schrijver, A.: A combinatorial algorithm for minimizing submodular functions in polynomial time. Journal of Combinatorial Theory B 80, 346–355 (2000)
Szczepara, B.: Minimal clones generated by groupoids. PhD thesis, Université de Montréal (1996)
Szendrei, Á.: Clones in Universal Algebra. In: Séminaires de Mathématiques Supérieures, University of Montreal, vol. 99 (1986)
Woeginger, G.: An efficient algorithm for a class of constraint satisfaction problems. Operations Research Letters 30(1), 9–16 (2002)
Zhang, C.: Finding critical independent sets and critical vertex subsets are polynomial problems. SIAM J. Discrete Math. 3(3), 431–438 (1990)
Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Proceedings of the 38th ACM Symposium on Theory of Computing (STOC 2006), pp. 681–690 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Jonsson, P., Nordh, G. (2008). Introduction to the Maximum Solution Problem. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds) Complexity of Constraints. Lecture Notes in Computer Science, vol 5250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92800-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-92800-3_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92799-0
Online ISBN: 978-3-540-92800-3
eBook Packages: Computer ScienceComputer Science (R0)