Abstract
The structure of real complex networks is often modular, with sets of nodes more connected between them than to the rest of the network. These communities are usually reflecting a topology-functionality interplay, whose discovery is basic for the understanding of the operation of the networks. Thus, much attention has been driven to the determination of the modular structure of complex networks. Recently it has been shown that this modular organization appears at several scales of description, which may be found by a synchronization process on top of these networks. Here we make use of it for a tentative uncovering of functional groups in the neural system of the nematode C. elegans.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)
Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)
Guimerà, R., Amaral, L.A.N.: Functional cartography of metabolic networks. Nature 433, 895–900 (2005a)
Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)
Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004a)
Bell, E.T.: Exponential Numbers. Amer. Math. Monthly 41, 411–419 (1934)
Brandes, U., Delling, D., Gaertler, M., Goerke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: Maximizing Modularity is hard. arXiv:physics/0608255 (2006)
Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)
Duch, J., Arenas, A.: Community identification using Extremal Optimization. Phys. Rev. E 72, 027104 (2005)
Guimerà, R., Amaral, L.A.N.: Cartography of complex networks: modules and universal roles. J. Stat. Mech., P02001 (2005b)
Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004b)
Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103, 8577–8582 (2006)
Pujol, J.M., Béjar, J., Delgado, J.: Clustering Algorithm for Determining Community Structure in Large Networks. Phys. Rev. E 74, 016107 (2006)
Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A.: Community analysis in social networks. J. Stat. Mech., P09008 (2005)
Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104, 36–41 (2007)
Arenas, A., Díaz-Guilera, A., Perez-Vicente, C.J.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006)
Arenas, A., Díaz-Guilera, A., Perez-Vicente, C.J.: Synchronization processes in complex networks Physica D 224, 27–34 (2006)
Gómez-Gardeñes, J., Moreno, Y., Arenas, A.: Paths to synchronization on complex networks. Phys. Rev. Lett. 98, 034101 (2007)
Gómez-Gardeñes, J., Moreno, Y., Arenas, A.: Synchronizability determined by coupling strengths and topology on Complex Networks. Phys. Rev. E 75, 066106 (2007)
Boccaletti, S., Ivanchenko, M., Latora, V., Pluchino, A., Rapisarda, A.: Detecting complex network modularity by dynamical clustering. Phys. Rev. E 75, 045102(R) (2007)
White, J.G., Southgate, E., Thompson, J.N., Brenner, S.: The structure of the nervous system of the nematode caenorhabditis elegans. Phil. Trans. Royal Soc. London. Series B 314, 1–340 (1986)
Achacoso, T.B., Yamamoto, W.S.: AY’s Neuroanatomy of C. Elegans for Computation. CRC Press, Boca Raton (1992)
Kuramoto, Y.: Self-entrainment of a population of coupled nonlinear oscillators. Lect. Notes in Physics 30, 420–422 (1975)
Durbin, R.M.: Studies on the Development and Organisation of the Nervous System of Caenorhabditis elegans. PhD Thesis, University of Cambridge (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arenas, A., Fernández, A., Gómez, S. (2008). A Complex Network Approach to the Determination of Functional Groups in the Neural System of C. Elegans. In: Liò, P., Yoneki, E., Crowcroft, J., Verma, D.C. (eds) Bio-Inspired Computing and Communication. BIOWIRE 2007. Lecture Notes in Computer Science, vol 5151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92191-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-92191-2_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92190-5
Online ISBN: 978-3-540-92191-2
eBook Packages: Computer ScienceComputer Science (R0)