Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Complex Network Approach to the Determination of Functional Groups in the Neural System of C. Elegans

  • Conference paper
Bio-Inspired Computing and Communication (BIOWIRE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5151))

Included in the following conference series:

Abstract

The structure of real complex networks is often modular, with sets of nodes more connected between them than to the rest of the network. These communities are usually reflecting a topology-functionality interplay, whose discovery is basic for the understanding of the operation of the networks. Thus, much attention has been driven to the determination of the modular structure of complex networks. Recently it has been shown that this modular organization appears at several scales of description, which may be found by a synchronization process on top of these networks. Here we make use of it for a tentative uncovering of functional groups in the neural system of the nematode C. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  2. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  3. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guimerà, R., Amaral, L.A.N.: Functional cartography of metabolic networks. Nature 433, 895–900 (2005a)

    Article  Google Scholar 

  5. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  6. Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004a)

    Article  Google Scholar 

  7. Bell, E.T.: Exponential Numbers. Amer. Math. Monthly 41, 411–419 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brandes, U., Delling, D., Gaertler, M., Goerke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: Maximizing Modularity is hard. arXiv:physics/0608255 (2006)

    Google Scholar 

  9. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)

    Article  Google Scholar 

  10. Duch, J., Arenas, A.: Community identification using Extremal Optimization. Phys. Rev. E 72, 027104 (2005)

    Article  Google Scholar 

  11. Guimerà, R., Amaral, L.A.N.: Cartography of complex networks: modules and universal roles. J. Stat. Mech., P02001 (2005b)

    Google Scholar 

  12. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004b)

    Article  Google Scholar 

  13. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103, 8577–8582 (2006)

    Article  Google Scholar 

  14. Pujol, J.M., Béjar, J., Delgado, J.: Clustering Algorithm for Determining Community Structure in Large Networks. Phys. Rev. E 74, 016107 (2006)

    Article  Google Scholar 

  15. Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A.: Community analysis in social networks. J. Stat. Mech., P09008 (2005)

    Google Scholar 

  16. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104, 36–41 (2007)

    Article  Google Scholar 

  17. Arenas, A., Díaz-Guilera, A., Perez-Vicente, C.J.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006)

    Article  Google Scholar 

  18. Arenas, A., Díaz-Guilera, A., Perez-Vicente, C.J.: Synchronization processes in complex networks Physica D 224, 27–34 (2006)

    Google Scholar 

  19. Gómez-Gardeñes, J., Moreno, Y., Arenas, A.: Paths to synchronization on complex networks. Phys. Rev. Lett. 98, 034101 (2007)

    Article  Google Scholar 

  20. Gómez-Gardeñes, J., Moreno, Y., Arenas, A.: Synchronizability determined by coupling strengths and topology on Complex Networks. Phys. Rev. E 75, 066106 (2007)

    Article  MathSciNet  Google Scholar 

  21. Boccaletti, S., Ivanchenko, M., Latora, V., Pluchino, A., Rapisarda, A.: Detecting complex network modularity by dynamical clustering. Phys. Rev. E 75, 045102(R) (2007)

    Article  Google Scholar 

  22. White, J.G., Southgate, E., Thompson, J.N., Brenner, S.: The structure of the nervous system of the nematode caenorhabditis elegans. Phil. Trans. Royal Soc. London. Series B 314, 1–340 (1986)

    Article  Google Scholar 

  23. Achacoso, T.B., Yamamoto, W.S.: AY’s Neuroanatomy of C. Elegans for Computation. CRC Press, Boca Raton (1992)

    Google Scholar 

  24. Kuramoto, Y.: Self-entrainment of a population of coupled nonlinear oscillators. Lect. Notes in Physics 30, 420–422 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. Durbin, R.M.: Studies on the Development and Organisation of the Nervous System of Caenorhabditis elegans. PhD Thesis, University of Cambridge (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arenas, A., Fernández, A., Gómez, S. (2008). A Complex Network Approach to the Determination of Functional Groups in the Neural System of C. Elegans. In: Liò, P., Yoneki, E., Crowcroft, J., Verma, D.C. (eds) Bio-Inspired Computing and Communication. BIOWIRE 2007. Lecture Notes in Computer Science, vol 5151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92191-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92191-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92190-5

  • Online ISBN: 978-3-540-92191-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics