Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparing First-Fit and Next-Fit for Online Edge Coloring

  • Conference paper
Algorithms and Computation (ISAAC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5369))

Included in the following conference series:

Abstract

We study the performance of the algorithms First-Fit and Next-Fit for two online edge coloring problems. In the min-coloring problem, all edges must be colored using as few colors as possible. In the max-coloring problem, a fixed number of colors is given, and as many edges as possible should be colored. Previous analysis using the competitive ratio has not separated the performance of First-Fit and Next-Fit, but intuition suggests that First-Fit should be better than Next-Fit. We compare First-Fit and Next-Fit using the relative worst order ratio, and show that First-Fit is better than Next-Fit for the min-coloring problem. For the max-coloring problem, we show that First-Fit and Next-Fit are not strictly comparable, i.e., there are graphs for which First-Fit is better than Next-Fit and graphs where Next-Fit is slightly better than First-Fit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bar-Noy, A., Motwani, R., Naor, J.: The greedy algorithm is optimal for on-line edge coloring. Information Processing Letters 44(5), 251–253 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms. Algorithmica 11(1), 73–91 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyar, J., Ehmsen, M.R., Larsen, K.S.: Theoretical evidence for the superiority of LRU-2 over LRU for the paging problem. In: Approximation and Online Algorithms, pp. 95–107 (2006)

    Google Scholar 

  4. Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms. ACM Transactions on Algorithms 3(22) (2007)

    Google Scholar 

  5. Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst-order ratio applied to paging. Journal of Computer and System Sciences 73, 818–843 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyar, J., Medvedev, P.: The relative worst order ratio applied to seat reservation. ACM Transactions on Algorithms 4(4), article 48, 22 pages (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Epstein, L., Favrholdt, L.M., Kohrt, J.: Separating online scheduling algorithms with the relative worst order ratio. Journal of Combinatorial Optimization 12(4), 362–385 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Favrholdt, L.M., Nielsen, M.N.: On-line edge coloring with a fixed number of colors. Algorithmica 35(2), 176–191 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gabber, O., Galil, Z.: Explicit constructions of linear-sized superconcentrators. Journal of Computer and System Sciences 22, 407–420 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica 3, 79–119 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kenyon, C.: Best-fit bin-packing with random order. In: 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 359–364 (1996)

    Google Scholar 

  12. Margulis, G.A.: Explicit constructions of concentrators. Problems of Information Transmission 9(4), 325–332 (1973)

    Google Scholar 

  13. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  14. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM 28(2), 202–208 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ehmsen, M.R., Favrholdt, L.M., Kohrt, J.S., Mihai, R. (2008). Comparing First-Fit and Next-Fit for Online Edge Coloring. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92182-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92181-3

  • Online ISBN: 978-3-540-92182-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics