Nothing Special   »   [go: up one dir, main page]

Skip to main content

Implementation of Parallel Genetic Algorithms on Graphics Processing Units

  • Chapter
Intelligent and Evolutionary Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 187))

Abstract

In this paper, we propose to parallelize a Hybrid Genetic Algorithm (HGA) on Graphics Processing Units (GPUs) which are available and installed on ubiquitous personal computers. HGA extends the classical genetic algorithm by incorporating the Cauchy mutation operator from evolutionary programming. In our parallel HGA, all steps except the random number generation procedure are performed in GPU and thus our parallel HGA can be executed effectively and efficiently. We suggest and develop the novel pseudo-deterministic selection method which is comparable to the traditional global selection approach with significant execution time performance advantages.We perform experiments to compare our parallel HGA with our previous parallel FEP (Fast Evolutionary programming) and demonstrate that the former is much more effective and efficient than the latter. The parallel and sequential implementations of HGA are compared in a number of experiments, it is observed that the former outperforms the latter significantly. The effectiveness and efficiency of the pseudo-deterministic selection method is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)

    Google Scholar 

  2. Oh, I.S., Lee, J.S., Moon, B.R.: Hybrid Genetic Algorithms for Feature Selection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(11), 1424–1437 (2004)

    Article  Google Scholar 

  3. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  4. Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  5. Myers, J.W., Laskey, K.B., DeJong, K.A.: Learning Bayesian Networks from Incomplete Data using Evolutionary Algorithms. In: Proceedings of the First Annual Conference on Genetic and Evolutionary Computation Conference, pp. 458–465 (1999)

    Google Scholar 

  6. Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R., Kuijpers, C.: Structural Learning of Bayesian Network by Genetic Algorithms: A Performance Analysis of Control Parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(9), 912–926 (1996)

    Article  Google Scholar 

  7. GPGPU: General-Purpose Computation Using Graphics Hardware, http://www.gpgpu.org/

  8. Moreland, K., Angel, E.: The FFT on a GPU. In: Proceedings of 2003 SIGGRAPH/Eurographics Workshop on Graphics Hardware, pp. 112–119 (2003)

    Google Scholar 

  9. Wang, J.Q., Wong, T.T., Heng, P.A., Leung, C.S.: Discrete Wavelet Transform on GPU. In: Proceedings of ACM Workshop on General Purpose Computing on Graphics Processors C-41 (2004)

    Google Scholar 

  10. Jiang, C., Snir, M.: Automatic Tuning Matrix Multiplication Performance on Graphics Hardware. In: Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques, pp. 185–196 (2005)

    Google Scholar 

  11. Galoppo, N., Govindaraju, N.K., Henson, M., Manocha, D.: LU-GPU: Efficient Algorithms for Solving Dense Linear Systems on Graphics Hardware. In: Proceedings of the ACM/IEEE SC 2005 Conference 3 (2005)

    Google Scholar 

  12. Fok, K.L., Wong, T.T., Wong, M.L.: Evolutionary Computing on Consumer-Level Graphics Hardware. IEEE Intelligent Systems 22(2), 69–78 (2007)

    Article  Google Scholar 

  13. Wong, M.L., Wong, T.T., Fok, K.L.: Parallel Evolutionary Algorithms on Graphics Processing Unit. In: Proceedings of IEEE Congress on Evolutionary Computation 2005 (CEC 2005), pp. 2286–2293 (2005)

    Google Scholar 

  14. Yao, X., Liu, Y.: Fast Evolutionary Programming. In: Proceedings of the 5th Annual Conference on Evolutionary Programming, pp. 451–460 (1996)

    Google Scholar 

  15. Yao, X., Liu, Y., Lin, G.: Evolutionary Programming Made Faster. IEEE Transactions on Evolutionary Computation 3(2), 82–102 (1999)

    Article  Google Scholar 

  16. Fogel, D.B.: Evolutionary Computation: Toward a New Philosohpy of Machine Intelligence. IEEE Press, Los Alamitos (2000)

    Google Scholar 

  17. Fogel, L., Owens, A., Walsh, M.: Artificial Intelligence Through Simulated Evolution. John Wiley and Sons, Chichester (1966)

    MATH  Google Scholar 

  18. Angeline, P.: Genetic Programming and Emergent Intelligent. In: Kinnear, K.E. (ed.) Advances in Genetic Programming, pp. 75–97. MIT Press, Cambridge (1994)

    Google Scholar 

  19. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  20. Bäck, T., Fogel, D.B., Michalewicz, Z.: Evolutionary Computation 2: Advanced Algorithms and Operators. Insitute of Physic Publishing (2000)

    Google Scholar 

  21. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  22. Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  23. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction. Morgan Kaufmann, San Francisco (1998)

    MATH  Google Scholar 

  24. Schewefel, H.P.: Numerical Optimization of Computer Models. John Wiley and Sons, Chichester (1981)

    Google Scholar 

  25. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wong, M.L., Wong, T.T. (2009). Implementation of Parallel Genetic Algorithms on Graphics Processing Units. In: Gen, M., et al. Intelligent and Evolutionary Systems. Studies in Computational Intelligence, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95978-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-95978-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-95977-9

  • Online ISBN: 978-3-540-95978-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics