Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 242))

Summary

Segmentation is an important step in many medical imaging applications and a variety of image segmentation techniques exist. One group of segmentation algorithms is based on clustering concepts. In this chapter we provide an overview of several fuzzy c-means based clustering approaches and their application to medical imaging. In particular we evaluate the conventional hard c-means and fuzzy c-means (FCM) approches as well as three computationally more efficient derivatives of fuzzy c-means: fast FCM with random sampling, fast generalised FCM, and a new anisotropic mean shift based FCM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmed, M., Yamany, S., Mohamed, N., Farag, A., Moriaty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of mri data. IEEE Trans. Medical Imaging 21, 193–199 (2002)

    Article  Google Scholar 

  2. Bezdek, J.: A convergence theorem for the fuzzy isodata clustering algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 2, 1–8 (1980)

    Article  MATH  Google Scholar 

  3. Bradley, P., Fayyad, U.: Refining initial points for k-means clustering. In: 15th Int. Conference on Machine Learning, pp. 91–99 (1998)

    Google Scholar 

  4. Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognition 40(3), 825–838 (2007)

    Article  MATH  Google Scholar 

  5. Chen, S.C., Zhang, D.Q.: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Systems, Man and Cybernetics - Part B: Cybernetics 34, 1907–1916 (2004)

    Article  Google Scholar 

  6. Cheng, T., Goldgof, D., Hall, L.: Fast fuzzy clustering. Fuzzy Sets and Systems 93, 49–56 (1998)

    Article  MATH  Google Scholar 

  7. Chuang, K., Tzeng, S., Chen, H., Wu, J., Chen, T.: Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics 30, 9–15 (2006)

    Article  Google Scholar 

  8. Comaniciu, D., Meer, P.: Mean shift analysis and applications. In: 7th Int. Conference on Computer Vision, pp. 1197–1203 (1999)

    Google Scholar 

  9. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Analysis and Machine Intelligence 24, 603–619 (2002)

    Article  Google Scholar 

  10. Dhillon, I., Guan, Y., Kogan, J.: Refining clusters in high dimensional text data. In: 2nd SIAM ICDM Workshop on clustering high dimensional data (2002)

    Google Scholar 

  11. Eschrich, S., Ke, J., Hall, L., Goldgof, D.: Fast accurate fuzzy clustering through data reduction. IEEE Trans. Fuzzy Systems 11, 262–270 (2003)

    Article  Google Scholar 

  12. Haralick, R.M., Shapiro, L.G.: Image segmentation techniques. Computer Vision, Graphics, and Image Processing 29(1), 100–132 (1985)

    Article  Google Scholar 

  13. Hartigan, J.: Clustering algorithms. John Wiley & Sons, New York (1975)

    MATH  Google Scholar 

  14. Hu, R., Hathaway, L.: On efficiency of optimization in fuzzy c-means. Neural, Parallel and Scientific Computation 10, 141–156 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Kass, M., Witkin, A.P., Terzopoulos, D.: Snakes: Active contour models. Int. Journal of Computer Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  16. Kolen, J., Hutcheson, T.: Reducing the time complexity of the fuzzy c-means algorithm. IEEE Trans. Fuzzy Systems 10(2), 263–267 (2002)

    Article  Google Scholar 

  17. Leski, J.: Toward a robust fuzzy clustering. Fuzzy Sets and Systems 137, 215–233 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematical statistics and probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  19. Mao, J., Jain, A.K.: A self-organising network for hyperellipsoidal clustering (hec). IEEE Trans. Neural Networks 7(1), 16–29 (1996)

    Article  Google Scholar 

  20. Szilagyi, L., Benyo, Z., Szilagyii, S.M., Adam, H.S.: MR brain image segmentation using an enhanced fuzzy c-means algorithm. In: 25th IEEE Int. Conference on Engineering in Medicine and Biology, vol. 1, pp. 724–726 (2003)

    Google Scholar 

  21. Wang, J., Thiesson, B., Xu, Y.-Q., Cohen, M.: Image and video segmentation by anisotropic kernel mean shift. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 238–249. Springer, Heidelberg (2004)

    Google Scholar 

  22. Zhang, B.: Generalized k-harmonic means dynamic weighting of data in unsupervised learning. In: 1st SIAM Int. Conference on Data Mining (2001)

    Google Scholar 

  23. Zhou, H., Schaefer, G., Shi, C.: A mean shift based fuzzy c-means algorithm for image segmentation. In: 30th IEEE Int. Conference Engineering in Medicine and Biology (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, H., Schaefer, G., Shi, C. (2009). Fuzzy C-Means Techniques for Medical Image Segmentation. In: Jin, Y., Wang, L. (eds) Fuzzy Systems in Bioinformatics and Computational Biology. Studies in Fuzziness and Soft Computing, vol 242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89968-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89968-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89967-9

  • Online ISBN: 978-3-540-89968-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics