Nothing Special   »   [go: up one dir, main page]

Skip to main content

Decision Rule Based Data Models Using NetTRS System Overview

  • Chapter
Transactions on Rough Sets IX

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 5390))

  • 527 Accesses

Abstract

The NetTRS system is a web service that makes induction, evaluation and postprocessing of decision rules possible. The TRS library is the kernel of the system. It allows to induce rules by means of the tolerance rough sets model. The NetTRS makes user interface of the TRS library available in the Internet. The main emphasis of the NetTRS system is placed on induction and postprocessing of decision rules. This article shows the architecture and the functionality of the system. This paper describes also the parameterization of algorithms that are implemented in the TRS library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. An, A., Cercone, N.: Rule quality measures for rule induction systems– description and evaluation. Computational Intelligence 17, 409–424 (2001)

    Article  Google Scholar 

  2. Bazan, J., Szczuka, M., Wróblewski, J.: A new version of rough set exploration system. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 397–404. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Bazan, J., Latkowski, R., Szczuka, M.: DIXER– distributed executor for rough set exploration system. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 39–47. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Bruha, I.: Quality of Decision Rules: Definitions and Classification Schemes for Multiple Rules. In: Nakhaeizadeh, G., Taylor, C.C. (eds.) Machine Learning and Statistics, The Interface, pp. 107–131. Wiley, NY (1997)

    Google Scholar 

  5. Grzymała-Busse, J.W., Ziarko, W.: Data mining based on rough sets. In: Wang, J. (ed.) Data Mining Opportunities and Challenges, pp. 142–173. IGI Publishing, Hershey (2003)

    Chapter  Google Scholar 

  6. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  7. Kubat, M., Bratko, I., Michalski, R.S.: Machine Learning and Data Mining: Methods and Applications. Wiley, NY (1998)

    Google Scholar 

  8. Michalski, R.S., Carbonell, J.G., Mitchel, T.M.: Machine Learning, vol. I. Morgan-Kaufman, Los Altos (1983)

    Book  Google Scholar 

  9. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, USA (1996)

    MATH  Google Scholar 

  10. Nguyen, H.S., Nguyen, S.H.: Some Efficient Algorithms for Rough Set Methods. In: Proceedings of the Sixth International Conference, Information Processing and Management of Uncertainty in Knowledge-Based Systems, Granada, Spain, pp. 1451–1456 (1996)

    Google Scholar 

  11. Ohrn, A., Komorowski, J., Skowron, A., Synak, P.: The design and implementation of a knowledge discovery toolkit based on rough sets: The ROSETTA system. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methodology and Applications, pp. 376–399. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  12. Pawlak, Z.: Rough Sets. Theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht (1991)

    Book  MATH  Google Scholar 

  13. Podraza, R., Walkiewicz, M., Dominik, A.: Credibility coefficients in ARES Rough Sets Exploration Systems. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS, vol. 3642, pp. 29–38. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Prȩdki, B., Słowiński, R., Stefanowski, J., Susmaga, R.: ROSE – Software implementation of the rough set theory. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS, vol. 1424, pp. 605–608. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan-Kaufman, San Mateo (1993)

    Google Scholar 

  16. Quinlan, J.R.: Combining instance-based learning and model-based learning. In: Proceedings of the Tenth International Conference on Machine Learning (ML 1993), Massachusetts, Amherst, MA, USA, pp. 236–243 (1993)

    Google Scholar 

  17. Sikora, M.: Decision rules-based data models using NetTRS – methods and algorithms, NetTrs Website, Silesian Univesity of Technology, Gliwice, Poland (2006), http://nettrs.polsl.pl/nettrs/Examples/NeTTRSalg.pdf

  18. Sikora, M., Michalak M.: Decision rules-based data models using NetTRS – users guide, NetTrs Website, Silesian Univesity of Technology, Gliwice, Poland (2007), http://nettrs.polsl.pl/nettrs/Examples/Usersguide.pdf

  19. Sikora, M.: Adaptative application of quality measures in rules induction algorithms. In: Kozielski, S. (ed.) Databases, new technologies, vol. I. Transport and Communication Publishers (Wydawnictwa Komunikacji i Ła̧czności), Warsaw, Poland (2007) (in Polish)

    Google Scholar 

  20. Sikora, M.: Rule quality measures in creation and reduction of data role models. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 716–725. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Sikora, M.: An algorithm for generalization of decision rules by joining. Foundation on Computing and Decision Sciences 30, 227–239 (2005)

    Google Scholar 

  22. Sikora, M.: Approximate decision rules induction algorithm using rough sets and rule-related quality measures. Theoretical and Applied Informatics 4, 3–16 (2004)

    Google Scholar 

  23. Sikora, M., Proksa, P.: Algorithms for generation and filtration of approximate decision rules, using rule-related quality measures. In: Proceedings of International Workshop on Rough Set Theory and Granular Computing (RSTGC 2001), Matsue, Shimane, Japan, pp. 93–98 (2001)

    Google Scholar 

  24. Skowron, A., Rauszer, C.: The Discernibility Matrices and Functions in Informa-tion systems. In: Słowiński, R. (ed.) Intelligent Decision Support. Handbook of applications and advances of the rough set theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  25. Stefanowski, J.: Rough set based rule induction techniques for classification problems. In: Proceedings of the 6th European Congress of Intelligent Techniques and Soft Computing, Achen, Germany, pp. 107–119 (1998)

    Google Scholar 

  26. Stepaniuk, J.: Optimizations of Rough Set Model. Fundamenta Informaticae 25, 1–19 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Stepaniuk, J.: Knowledge Discovery by Application of Rough Set Models. Institute of Computer Sciences Polish Academy of Sciences, Reports 887, Warsaw, Poland (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Michalak, M., Sikora, M. (2008). Decision Rule Based Data Models Using NetTRS System Overview. In: Peters, J.F., Skowron, A., Rybiński, H. (eds) Transactions on Rough Sets IX. Lecture Notes in Computer Science, vol 5390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89876-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89876-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89875-7

  • Online ISBN: 978-3-540-89876-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics