Abstract
Unique input output (UIO) sequences have important applications in conformance testing of finite state machines (FSMs). Previous experimental and theoretical research has shown that evolutionary algorithms (EAs) can compute UIOs efficiently on many FSM instance classes, but fail on others. However, it has been unclear how and to what degree EA parameter settings influence the runtime on the UIO problem. This paper investigates the choice of acceptance criterion in the (1+1) EA and the use of crossover in the (μ+1) Steady State Genetic Algorithm. It is rigorously proved that changing these parameters can reduce the runtime from exponential to polynomial for some instance classes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lehre, P.K., Yao, X.: Runtime analysis of (1+1) EA on computing unique input output sequences. In: Proceedings of 2007 IEEE Congress on Evolutionary Computation (CEC 2007), pp. 1882–1889 (2007)
Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)
Clark, J.A., Dolado, J.J., Harman, M., Hierons, R.M., Jones, B., Lumkin, M., Mitchell, B., Mancoridis, S., Rees, K., Roper, M., Shepperd, M.: Reformulating software engineering as a search problem. IEE Proceedings-Software 150(3), 161–175 (2003)
Derderian, K.A., Hierons, R.M., Harman, M., Guo, Q.: Automated unique input output sequence generation for conformance testing of fsms. The Computer Journal 49(3), 331–344 (2006)
Guo, Q., Hierons, R.M., Harman, M., Derderian, K.A.: Computing unique input/output sequences using genetic algorithms. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 164–177. Springer, Heidelberg (2004)
Guo, Q., Hierons, R.M., Harman, M., Derderian, K.A.: Constructing multiple unique input/output sequences using metaheuristic optimisation techniques. IEE Proceedings Software 152(3), 127–140 (2005)
Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276, 51–81 (2002)
He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing 3(1), 21–35 (2004)
Jansen, T., Wegener, I.: Evolutionary algorithms - how to cope with plateaus of constant fitness and when to reject strings of the same fitness. IEEE Transactions on Evolutionary Computation 5(6), 589–599 (2001)
Lehre, P.K., Yao, X.: Crossover can be constructive when computing unique input output sequences. Technical Report (CSR-08-08), University of Birmingham, School of Computer Science (2008)
Jansen, T., Wegener, I.: The analysis of evolutionary algorithms - a proof that crossover really can help. Algorithmica 34(1), 47–66 (2002)
Storch, T., Wegener, I.: Real royal road functions for constant population size. Theoretical Computer Science 320(1), 123–134 (2004)
Fischer, S., Wegener, I.: The one-dimensional ising model: Mutation versus recombination. Theoretical Computer Science 344(2-3), 208–225 (2005)
Sudholt, D.: Crossover is provably essential for the ising model on trees. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2005), pp. 1161–1167 (2005)
Oliveto, P., He, J., Yao, X.: Analysis of population-based evolutionary algorithms for the vertex cover problem. In: Proceedings of the IEEE World Congress on Computational Intelligence (WCCI 2008), Hong Kong, June 1-6 (2008)
Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58(301), 13–30 (1963)
Oliveto, P., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation. Technical Report Reihe CI, No. CI-247/08, SFB 531, Technische Universität Dortmund, Germany (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lehre, P.K., Yao, X. (2008). Crossover Can Be Constructive When Computing Unique Input Output Sequences. In: Li, X., et al. Simulated Evolution and Learning. SEAL 2008. Lecture Notes in Computer Science, vol 5361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89694-4_60
Download citation
DOI: https://doi.org/10.1007/978-3-540-89694-4_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89693-7
Online ISBN: 978-3-540-89694-4
eBook Packages: Computer ScienceComputer Science (R0)