Nothing Special   »   [go: up one dir, main page]

Skip to main content

Crossover Can Be Constructive When Computing Unique Input Output Sequences

  • Conference paper
Simulated Evolution and Learning (SEAL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5361))

Included in the following conference series:

  • 1485 Accesses

Abstract

Unique input output (UIO) sequences have important applications in conformance testing of finite state machines (FSMs). Previous experimental and theoretical research has shown that evolutionary algorithms (EAs) can compute UIOs efficiently on many FSM instance classes, but fail on others. However, it has been unclear how and to what degree EA parameter settings influence the runtime on the UIO problem. This paper investigates the choice of acceptance criterion in the (1+1) EA and the use of crossover in the (μ+1) Steady State Genetic Algorithm. It is rigorously proved that changing these parameters can reduce the runtime from exponential to polynomial for some instance classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lehre, P.K., Yao, X.: Runtime analysis of (1+1) EA on computing unique input output sequences. In: Proceedings of 2007 IEEE Congress on Evolutionary Computation (CEC 2007), pp. 1882–1889 (2007)

    Google Scholar 

  2. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)

    Article  Google Scholar 

  3. Clark, J.A., Dolado, J.J., Harman, M., Hierons, R.M., Jones, B., Lumkin, M., Mitchell, B., Mancoridis, S., Rees, K., Roper, M., Shepperd, M.: Reformulating software engineering as a search problem. IEE Proceedings-Software 150(3), 161–175 (2003)

    Article  Google Scholar 

  4. Derderian, K.A., Hierons, R.M., Harman, M., Guo, Q.: Automated unique input output sequence generation for conformance testing of fsms. The Computer Journal 49(3), 331–344 (2006)

    Article  Google Scholar 

  5. Guo, Q., Hierons, R.M., Harman, M., Derderian, K.A.: Computing unique input/output sequences using genetic algorithms. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 164–177. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Guo, Q., Hierons, R.M., Harman, M., Derderian, K.A.: Constructing multiple unique input/output sequences using metaheuristic optimisation techniques. IEE Proceedings Software 152(3), 127–140 (2005)

    Article  Google Scholar 

  7. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276, 51–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing 3(1), 21–35 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jansen, T., Wegener, I.: Evolutionary algorithms - how to cope with plateaus of constant fitness and when to reject strings of the same fitness. IEEE Transactions on Evolutionary Computation 5(6), 589–599 (2001)

    Article  Google Scholar 

  10. Lehre, P.K., Yao, X.: Crossover can be constructive when computing unique input output sequences. Technical Report (CSR-08-08), University of Birmingham, School of Computer Science (2008)

    Google Scholar 

  11. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms - a proof that crossover really can help. Algorithmica 34(1), 47–66 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Storch, T., Wegener, I.: Real royal road functions for constant population size. Theoretical Computer Science 320(1), 123–134 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fischer, S., Wegener, I.: The one-dimensional ising model: Mutation versus recombination. Theoretical Computer Science 344(2-3), 208–225 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sudholt, D.: Crossover is provably essential for the ising model on trees. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2005), pp. 1161–1167 (2005)

    Google Scholar 

  15. Oliveto, P., He, J., Yao, X.: Analysis of population-based evolutionary algorithms for the vertex cover problem. In: Proceedings of the IEEE World Congress on Computational Intelligence (WCCI 2008), Hong Kong, June 1-6 (2008)

    Google Scholar 

  16. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58(301), 13–30 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  17. Oliveto, P., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation. Technical Report Reihe CI, No. CI-247/08, SFB 531, Technische Universität Dortmund, Germany (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lehre, P.K., Yao, X. (2008). Crossover Can Be Constructive When Computing Unique Input Output Sequences. In: Li, X., et al. Simulated Evolution and Learning. SEAL 2008. Lecture Notes in Computer Science, vol 5361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89694-4_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89694-4_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89693-7

  • Online ISBN: 978-3-540-89694-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics